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Abstract—with the increasing pressure on non-function 
attributes (security, safety and reliability) requirements of 
an operation system, high–confidence operation system is 
becoming more important. Formal verification is the only 
known way to guarantee that a system is free of 
programming errors. We research on formal verification of 
operation system kernel in system code level and take 
theorem proving and model checking as the main technical 
methods to resolve the key techniques of verifying operation 
system kernel in C code level. We present a case study to the 
verification of real-world C systems code derived from an 
implementation of μC/OS – II in the end. 

Index Terms—formal verification, theorem proving, model 
checking, system code 

I.  INTRODUCTION  

 With the increasing pressure on non-function 
attributes (security, safety and reliability) requirements of 
operation system, high–confidence operation system is 
becoming more important. In manufacturing, defense, 
traffic, aviation, space flight, critical infrastructure control, 
automotive systems, medical service, assisted living and 
other key application domain, there have been lots of 
tremendous losses caused by the system failure which the 
core control software design flaws brought about. As 
accidents caused by software error or failure are becoming 
more and more, people come to realize that the system 
under the condition of high complexity, conventional 
software engineering methods and software design, 
evaluation method cannot solve embedded software 
reliability and safety design problems in depth. This calls 
for end-to-end guarantees of systems functionality, from 
applications down to hardware. 

While high–confidence certification is increasingly 
required at higher system levels, the operating system is 
generally confident to be correct. The correctness of the 
computer system can only be as good as that of the 
underlying Operation System (OS) kernel. The kernel, 
defined as the part of the system executing in the most 
privileged mode of the processor, has unlimited hardware 
access. Therefore, any fault in the kernel’s 
implementation has the potential to undermine the correct 

operation of the rest of the system. Worse still, numerous 
fixes, distributed by their vendors, may introduce new 
errors or render other system components inoperative.   

The only real solution to establish trustworthiness is 
formal verification. There are many kinds of verification 
work, which focuses on high level design. There exists the 
gap between design and implementation. In a sense, 
implementation is more important than design. Proving 
the implementation correctness is approach to build high-
confidence OS. It’s about explicit and strict mathematical 
proofs of the correctness of a system. This has, until 
recently, been considered to be an intractable proposition 
— the OS layer was too large and complex to poorly scale 
formal methods. However, there is a renewed tendency 
towards smaller OS kernels means that the size of the 
program to be verified is only around 10,000 loc [1, 2]. It 
is possible to use formal verification instead of traditional 
methods for this area. The combination of low-level, 
complex property, roughly 10,000 loc is still considered 
intractable in industry. In this paper we research on formal 
verification of this smaller OS kernel in system 
implementation level, which is a weak link in the 
trustworthy of OS kernel and is related to system 
eventually correctness. 

The next section provides an overview of OS 
verification and its application to kernels. Section 3 gives 
a more detailed two different formal verification methods 
for C program. Section 4 present a case study to the 
verification of real-world C systems code derived from an 
implementation of   II/ −OSCμ , which not only 
provides an opportunity to validate the models against 
realistic code, but also allows us to compare and contrast 
the two methods in practice. Section 5 summarizes our 
work and prospect. 

II. OS VERIFICATION 

To get an impression of the current industry best 
practice, we look through the software assurance standard: 
RTCA/DO-178B and Common Criteria. RTCA/DO-178B 
[3] is an industry-accepted guidance for satisfying 
airworthiness requirements which provides guidelines for 
the production of software for airborne systems and 
equipment. Systems are categorized by DO-178B as 
meeting safety assurance levels A through E based on 
their criticality in supporting safe aircraft flight. Systems 
are categorized by DO-178B as meeting safety assurance 
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levels A through E based on their criticality in supporting 
safe aircraft flight. The level A is catastrophic failure 
protection and level E is minimal failure protection. 
Software/System assurance levels are shown in Fig.1. 

 Level A: Catastrophic Failure Protection 

 Level B: Hazardous/Severe  Failure Protection 

 Level C: Major Failure Protection 

 Level D: Minor Failure Protection 

 Level E: Minimal Failure Protection 

Figure 1.  Software/System assurance levels. 

And Common Criteria [4] is the other standard for 
software verification that is mutually recognized by a 
large number of countries. It textual research software 
level from the methodological perspective and the 
software artefacts are: the software requirements, the 
functional specification, the high-level design of the 
system, the low-level design, and finally the 
implementation. There are seven levels of assurance (EAL 
1–7) in the standard, which generate partitions by the 
treatment of each software artefact. None of currently 
commercially available OS kernels has been formally 
verified. Three popular ones including Trusted Solaris, 
Windows NT, and SELinux have been certified to 
Common Criteria EAL 4, but this level does not require 
any formal modeling and is not designed for systems 
deployed in potentially hostile situations. 

 Formal verification makes sure that software fulfils its 
specification. It’s believed that OS formal verified 
completely is high-confidence. Formal verification of OS 
code has so far been considered prohibitively expensive, 
or even impossible. In recent years, this view has been 
changing and there are some verification projects that 
target realistic amounts of system code. Here we review 
two main projects. 

The Verisoft [5] project is a large-scale effort to 
demonstrate the pervasive formal verification of a whole 
computer system from the hardware up to application 
software. It is a long-term research project funded by the 
German Federal Ministry of Education and Research 
(BMBF). The main goal of the project is the pervasive 
formal verification of computer systems. The project 
focused on implementation correctness. The main code 
verification technology used in this project was developed 
by Schirmer  [6]. The tool is a generic environment in the 
theorem provided by Isabelle [7] for the verification of 
sequential, imperative programs that can be instantiated to 
a number of different languages. The tool set includes a 
Floyd–Hoare–style logic for program verification. These 
semantic levels are connected to each other by 
equivalence proofs. The verification environment also 
integrates with tools such as software model checkers that 
can automatically discharge certain kinds of proof 
obligations, thereby reduce the manual proof effort. 

Recently, NICTA from Australia has made an OS 
verification project named L4.verified [8, 9]. The project 
is providing a mathematical, machine-checked proof of 
the functional correctness of the seL4 microkernel with 

respect to a high level, formal description of its expected 
behavior. And the aim is to produce a truly trustworthy, 
high-performance operating system kernel. The seL4 
kernel design was integrated tightly with two teams: 
NICTA OS group and L4.verified group. So that while the 
design was mainly driven by the NICTA OS group, the 
concurrent verification effort in L4.verified provided 
continuous, early feedback that was taken into account by 
the design group. They think starting the verification 
directly from the C source without any higher-level 
specification should be expected to be a difficult and long 
process. In contrast to the OS approach, the traditional 
formal methods would take the design ideas, formalize 
them into a specification first and then analyze that 
specification. Based on this, C-level implementation 
verification only needs to verify functional correctness. 

Formal verification can reduce the larger gap between 
user requirements and implementation and hence gain 
increasing confidence in system correctness. It makes 
others convince that the implementation of software fulfils 
its specification. Therefore, system correctness is 
described by means of a formal method, then the standard 
procedure through certain validation rules of these 
formalization specifications and relevant code verification, 
judge whether the program in accordance with the 
procedure specification indicated by the way of 
implementation. 

In the program verification field, predicate abstract 
method [10] presented by Graf is a kind of program 
oriented model abstract methods, which abstract program 
into finite state machine model based on a set of limited 
quantity predicate and then can use model-checking tool 
to verify. Combined with CEGAR （Counter-Example 
Guided Abstraction Refinement）method [11], model 
establishment and verification methods based on predicate 
abstract can verify software source code automatically. 
PCC (Proof - Carrying code) [12] and FPCC 
(Foundational Proof - Carrying code) [13] based on 
logical method, through carrying the proof of source 
codes, provides a mechanism that guarantee the safety of 
code before run. Due to lack of type expression ability the, 
PCC itself will only verify program’s simple attributes 
such as type safe. CAP [14] makes the program in the 
most general attributes can be verified by improving PCC 
expression. It is program verification method based on 
Hoare logic style in the assembly level. 

III. VERIFICATION METHOD 

Takes theorem proving and model-checking as the 
main technical methods to resolve the key techniques of 
verifying OS microkernel. The details are as follows. 

A. Theorem Proving  
We adopt program correctness validation technology 

based on Hoare logic [15] to establish the axiom 
semantics of C program. And then, use Coq as an 
interactive theorem proving tool to prove program 
correctness. 

Hoare logic provides a formal system for reasoning 
about program correctness. Hoare logic is based on the 



12 Code Formal Verification of Operation System  

Copyright © 2010 MECS                                                                     I.J. Computer Network and Information Security, 2010, 2, 10-18 

idea of a specification as a contract between the 
implementation of a function and its clients. The 
specification is made up of a pre-condition and a post-
condition. The pre-condition is a predicate describing the 
condition the function relies on for correct operation; the 
client must fulfill this condition. The post-condition is a 
predicate describing the condition the function establishes 
after correctly running; the client can rely on this 
condition being true after the call to the function. Hoare 
logic uses Hoare Triples to reason about program 
correctness. A Hoare Triple is of the form [P]S[Q] or 
{P}S{Q}, where P is the pre-condition, Q is the post-
condition, and S is the statement(s) that implement the 
function. 

Definition 1(termination): if each input a that makes 
P(a) true, program S will terminate, said the program S is 
terminated to P. Use Sterminate to stand for it. 

Definition 2(partially correct): if S is executed in a 
store initially satisfying P and it terminates, then the final 
store satisfies Q. Use [P]S[Q]  to stand for it. Partially 
correct form: Qe))(Sterminata)(P(a)and( iff [P]S[Q] →∀  

Definition 3(totally correct): assuming the P is 
satisfied before S executes, the S is guaranteed to 
terminate and when it does, the post-condition satisfies Q. 
Thus total correctness is partial correctness in addition to 
termination. Use {P}S{Q} to stand for it. Totally correct 
form: Q) and te)((Sterminaa)(P(a)( iff {P}S{Q} →∀  

And some rules of Hoare logic are as follows: 

skip： }P{skip}P{       

assign： }{:]}[{ PaxaxP =a                      
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21

21
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The main approach of verification is translated C 
program to formal language in a logic reasoning system. 
The translation is base on axiom semantics of C program. 
And we chose Hoare logic. The main steps of our program 
verification include: program designers provides 
additional properly assertion for program, and then 
generates verification conditions and theorem prove 
assistant completes the proof of verification conditions. 
The verification processes are shown in Fig.2. Here are 
the main steps in detail. 

 
Figure 2.  verification processes. 

（1）Provide proper assertion 

Proper assertions embody program semantics. We 
can’t directly analyze source code mechanically now. The 
automatic generation of loop invariants is still an unsolved 
problem. It refers to solving a fixed point of recursive 
formula, and solving this equation is usually undecidable. 
And a useful loop invariant precisely expressed 
relationship between variables which are operated by 
looping statements in program body. However, searching 
for an effective loop invariant is full of challenges. 

Therefore, the source code needs the programmer to 
provide the appropriate assertions, including the entrance 
of function, the exit of function and loop invariant. 
Through this process, C source code is translated into 
annotated C source code. Providing proper assertion will 
simplifies the proof and benefit for follow-up machine-
checkable proof. 

（2）Generate verification conditions 

Hoare logic constructs a contract between the 
implementation of a function and its clients. But search of 
its pre-condition is very difficult. Therefore, we use the 
weakest pre-predicate logic to calculus the pre-condition 
in Hoare logic. In this way, we can get pre-condition 
mechanically. The weakest pre-condition calculus [16] is 
proposed by Dijkstra which is used to perform program 
correctness proof and reason about the program.  

Weakest pre-condition: wp(S,Q) = M, set of states M 
for which: 

- M is started in state m∈  M, 

- M halts in state t where Q(m). 

Its basic idea is in order to verify {P}S{Q} we need to 
find out all P′ called Pre(S, Q), which make {P′}S{Q} 
established. Verify that )P( ′∃ P′∈ Pre(S, Q), P ⇒ P′. In 
these P′， look for a weakest pre-condition，and take it 
as the pre-condition of the program. Therefore proof 
process becomes to calculate WP(S, Q), and prove P ⇒ 
WP(S, Q)：{P} S {Q}  ⇔ ( P ⇒ wp(M,Q)) 

Here are the rules of weakest pre-condition: 

WP(skip,Q)=Q 

WP(“x = E”, Q) = Q[E/x] 

WP(“S1;S2” , Q) = WP (S1, WP(S2, Q)) 
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WP(IF B {S1} else {S2}, Q) = (B ⇒ WP(S1, Q)) ∧ 
(¬B ⇒ WP(S2, Q)) 

WP(while B {C }, Q ) = I   ∧  ( I ∧ B ⇒ VC(C, I) )  ∧ 
(I ∧ ¬B ⇒ Q )， I is loop invariant，B is loop condition. 

Verification conditions are generated mechanically 
according to the weakest pre-predicate logic. Through this 
process, annotated C source code is translated into a series 
of verification conditions. Since we use the weakest pre-
predicate logic to calculus the pre-condition in Hoare, 
therefore this verification conditions needn’t to be proved 
except for three type conditions (the entrance of function, 
the exit of function and loop invariant). 

（3）Interactive theorem proving 

Theorem proving method with high abstractions can 
process infinite state system theoretically. We use high 
order logic to describe the system and the system 
properties. Then transfer properties to be verified into 
theorem described by mathematical logic. In the end, use 
theorem proof assistant Coq [17] with axioms, proved 
theorem and reasoning rules to verify specification is 
correct in high order logic system. 

Coq is a theorem proof assistant based on high order 
logic, which is develop by INRIA using Objective Caml 
language. The tool is based on the logical frame 
CiC(Calculus of inductive Constructors), 
which is typed lambda calculus. Due to good 
implementation of Coq and powerful expression ability of 
CiC, Coq has been widely used in programming language 
theory research fields, such as meta programming 
language theory, formal analysis frame theory, program 
verification etc. 

Coq provide an abundant strategies library. For the 
same goal, we can adopt different strategies or strategy 
combinations to complete proof. Thus the choice of 
strategy is very important to the proof process. Coq has 
powerful development function. In Coq, we can formally 
definition our own logic system, reasoning system, etc. 
We formal defined our reasoning rules in Coq. Fig.3 is 
shown the definition. 

forall (P : Eprop), correct skip P P 

forall v e (P Q : Eprop), (forall E, P E -> Q (upd E v (eval E e))) -> 

correct (assign v e) P Q 

forall s1 s2 P P' Q, correct s1 P P' -> correct s2 P' Q -> correct (seq s1 

s2) P Q 

forall e s I, correct s (fun E => I E /\ eval E e <> 0) I -> correct (while 

e s) I (fun E => I E /\ eval E e = 0) 

forall e s1 s2 P Q, correct s1 (fun E => P E /\ eval E e <> 0) Q -> 

correct s2 (fun E => P E /\ eval E e = 0) Q -> correct (br e s1 s2) P Q 

forall s (P P' Q Q' : Eprop), (forall E, P E -> P' E) -> (forall E, Q' E -> 

Q E) ->  correct s P' Q' ->  correct s P Q. 

Figure 3.  Definition of Hoare logic in Coq. 

Coq uses interactive method with users to complete 
proof. Strategies proof and proof check reduce the proof 
complexity and realize the automation of proof to a 

certain extent. Since Coq provide lots of proof strategies 
for the user to choice, therefore users can decompose 
difficult proof into a series of lemma and choose proper 
strategies according to problem. Coq use reverse 
reasoning method. According to the input strategy 
decompose current given target proof goal to a series of 
simple objectives, then through constructing sub-targets 
proof get the whole goal of proof, finally through the 
proof checker to check the correctness of the proof. 

B. Model Checking 
Model checking is a formal verification method. It is 

able to determine the validity of a specification for all 
possible states or execution paths in a software system to 
which it is applicable. Given any finite M and 
specification f check that M is a genuine model of the 
specification f: M |=f. It enjoys substantial automation 
support. It has been quite successful for hardware 
verification. 

Model checking works on a model of the system that 
is typically reduced to what is relevant to the specific 
properties of interest. The model checker then 
exhaustively explores the model’s reachable state space to 
determine whether the properties are held. It is an 
automatic verification method, and can provide 
counterexample path when some properties are not 
satisfied.  The general model checking tools required to 
use their special modeling language. So when you use 
these tools, you must abstract system model manually.  

Model checking is only feasible for systems with a 
moderately-sized state space, which implies dramatic 
simplification.  Hence, this approach usually does not give 
guarantees about the actual system.  

There are two major challenges in practical and 
scalable application of model checking to software 
systems. The first challenge is the applicability of model 
checking. Generally, there are significantly different 
between the input formal representations of model 
checkers and the widely used software representations. In 
addition, software systems often have infinite state spaces 
while model checkers are often restricted to finite state 
systems. The second challenge is the intrinsic complexity 
of model checking. The number of possible states and 
execution paths in a real-world software system can be 
extremely large, which makes naive application of model 
checking to such a system intractable and requires state 
space reduction. So we apply two model checking tool try 
to verify C code. 

Therefore, direct model checking for software 
program is based on model abstraction, which abstracts 
the finite state space model from program. Based on the 
predicate abstract, modeling and verification of source 
code can be automatic. BLAST [18] is a model checking 
tool for C program, which developed by Berkeley 
California university. This tool is based on a 
counterexample automatically abstract refinement 
technology to construct abstraction model. It uses lazy 
predicate abstraction and interpolation-based predicate 
discovery methods to abstract ，verify and refine the state 
space of program. This tool can not only verify security 
attributes of sequence C program, but also verify 
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concurrent C program. And use theorem proof assistant 
Simplify to solve abstract state transition relationship. 
Model checking has been applied to the OS layer and has 
shown utility here as a means of bug discovery in code 
involving concurrency. So we try to use BLAST to verify 
OS kernel. 

SPIN [19] is an efficient model checker for models of 
distributed software systems. It has been used to detect 
design errors in applications ranging from high-level 
descriptions of distributed algorithms to detailed code for 
controlling telephone exchanges. SPIN accepts design 
specifications written in the verification language Promela 
(a Process Meta Language), and it accepts correctness 
claims specified in the syntax of standard Linear 
Temporal Logic (LTL) [20]. The verification languages of 
SPIN, Promela, more resembles a programming language 
than a modeling language. SPIN accepts correctness 
properties expressed in linear temporal logic (LTL). Vardi 
and Wolper showed in 1983 that any LTL formula can be 
translated into a Büchi automaton. SPIN performs the 
conversion to Büchi automata mechanically based on a 
simple on-the-fly construction [21]. 

LTL is a prominent formal specification language that 
is highly expressive and widely used in formal 
verification tools. LTL provides the temporal operators 
next (X), Future (F), Globally (G), until (U), weak-until 
(W), and release (R). Below is Requirement Specification 
BNF-grammar. 

)(|)(|)(|)(|)(|)(
|)(|)(|)(|||::

φφφφφφφϕφ
φφφφφφφφ

RWUGFX
pT →∨∧¬⊥=

 

Where p is LTL formulas. 

A Büchi automaton (BA) is a tuple (Q, ∑, δ, q0, F) 
where: 

- Q is a finite set of states 

-∑is an alphabet 

-δ: Q×∑→ 2Qis a transition function and 

- q0∈Q is a set of initial states 

- F⊆Q is a set of accepting states 

The set of executions accepted by a BA is called the 
language of the BA. Languages of BAs represent a 
superset of those of LTL; every LTL formula can be 
represented by a BA. When a BA is generated from an 
LTL formula, the language of the BA represents only the 
traces accepted by the LTL formula. For example the BA 
in Fig. 4 represents the language accepted by the LTL 
formula (φ1 U φ2). 

 

 
Figure 4.  BA for (φ1 U φ2) 

This formula specifies that φ1 holds in the initial state 
of the computation or in the current state and (φ1 U φ2) 
holds in the next state. The language of the BA in Fig.4 
accepts the set of traces {φ1φ2..., φ1φ1φ2..., 
φ1φ1φ1φ1φ1φ2...}. Notice that each of these traces passes 
through the accepting state Final. Temporal operators 
until (U) require φ2 satisfy in the future and don't involve 
anything occurred after φ2. 

IV. CASE STUDY 

In this paper we present a case study in the application 
of our models to the verification of real-world C systems 
code (Os_Core.c) derived from an implementation 
of II/ −OSCμ [22]. The II/ −OSCμ  is a low-cost 
priority-based pre-emptive real time multitasking 
operating system kernel for microprocessors, written 
mainly in the C programming language. It is mainly 
intended for use in embedded systems. Featuring such 
elements as preemptive multitasking, unlimited number of 
tasks and priorities, and round robin scheduling of tasks at 
equal priorities. Since published in 1992, it has been 
widely used all over the world. So we choose this OS 
kernel to verify. Function is shown in Fig.5. 

This function is used to prevent rescheduling to take 
place. This allows your application to prevent context 
switches until you are ready to permit context switching.    

II/ −OSCμ define two macros to deal with interrupt 
switch: OS_ENTER_CRITICAL() and 
OS_EXIT_CRITICAL(). When access critical sections, 
must use OS_ENTER_CRITICAL() to open interrupt, 
then use OS_EXIT_CRITICAL() before leave critical 
sections. This mechanism has three different 
implementations. In some special hardware, first 
implementation is the only choice. So we take this 
implementation.
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/****************************************** 
*  PREVENT SCHEDULING 
* 
* Description: This function is used to prevent rescheduling 
to take place.  This allows your application  to prevent 
context switches until you are ready to permit context 
switching. 
* 
* Arguments  : none 
* 
* Returns    : none 
* 
* Notes      : 1) You MUST invoke OSSchedMutex() and 
OSSchedUnMutex() in pair.  In other words, for every call to 
OSSchedMutex() you MUST have a call to 
OSSchedUnMutex(). 
*******************************************/ 
#define  OS_CRITICAL_METHOD    1 
 
#if OS_SCHED_MUTEX_EN > 0 
void  OSSchedMutex (void) 
{ 
#if OS_CRITICAL_METHOD == 3                      
 /*       Allocate storage for CPU status register           */ 
    OS_CPU_SR  cpu_sr; 
#endif     
     
     

if (OSRunning == TRUE) {                     
/*        Make sure multitasking is running                  */ 
        OS_ENTER_CRITICAL(); 
        if (OSMutexNesting < 255) {               
/*    Prevent OSMutexNesting from wrapping back to 0      */
            OSMutexNesting++;                     
 /*      Increment Mutex nesting level                       */ 
        } 
        OS_EXIT_CRITICAL(); 
    } 
} 
#endif     

Figure 5.  C source code. 

A. Theorem Proving Approach 
According to theorem proving approach, program 

designers provide additional proper assertion for the 
program, then generates verification conditions and 
theorem proof assistant completes the proof of verification 
conditions. Here we analysis reasoning process in Coq. 
This process is shown in Fig.6. 

For mutex_ok theorem, we prove it with Hoare logic 
reasoning and rich strategy libraries provided by Coq. We 
should prove every objectives generated by each proof 
step. When all targets have been proved, mutex_ok will be 
proved successfully. Details are shown in Fig.7.  

We abstract theorem (verification) from C program 
based on axiom semantics. The result shows that 
mutex_ok theorem is correct. So it means that this C 
program fulfils its specification. From the case, we can 
see that although the scale of code is not big, the cost of 
verification is expensive. And if our strategy library is 
power enough, the automation degree of proof will 
increase. 

 
Figure 6.  Definition in Coq. 

 
Figure 7.  Proven strategy. 

B. Model Checking Approach 
Model checking approach is utilizing two model-

checkers, BLAST and SPIN, to analyze and verify C 
program. We take research in the modeling method based 
on C program and the formal specification method which 
use LTL or CTL to description system attributes. We 
mainly focus on ensuring the program correctness and 
safety requirements. 

（1）Verification with BLAST 

In order to detect the program sequence security 
attributes, we usually need to add the corresponding 
observation variables and statements in the program to get 
to observe the value of the variable. In this case, the 
global variable Mutex is used to mark whether 
OS_ENTER_CRITICAL () or OS_EXIT_CRITICAL () is 
used alternately. BLAST uses relatively independent code 
description language to detect the sequence security 
attributes, which can protect the integrity of the source 
code as far as possible.  Fig.8 shows the specification 
document. 
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global int Mutex= 0; 
event { 
pattern { OS_ENTER_CRITICAL(); } 
guard {Mutex== 0 } 
action {Mutex= 1; }} 
event { 
pattern { OS_EXIT_CRITICAL();} 
guard { Mutex== 1 } 
action { Mutex = 0; }} 

Figure 8.  OS_ENTER_CRITICAL().spc. 

According to the concept of mutually exclusive, 
continuous twice to lock or unlock critical area is 
impracticable. When the program is invoked, 
OS_ENTER_CRITICAL (twice) or 
OS_EXIT_CRITICAL () function will trigger the Mutex 
variables and then trigger ERROR tags. After this, use 
BLAST command to check the program. This is shown in 
Fig.9. 

%spec.opt OS_ENTER_CRITICAL().spc Os_Core.c 
%pblast.opt –pred instrumented.pred instrumented.c 

Figure 9.  OS_ENTER_CRITICAL().spc. 

When BLAST finishes the check, it returns the result. 
The result of the souce code is that the system is safe. Fig. 
10 shows the result. 

Mutex==0 
Mutex ==1 
Read 2 predicates 
Begin Building CFA …… 
Finished Building CFA …… 
addPred: 0: (gui) adding predicate Mutex ==0 to the system 
addPred: 1: (gui) adding predicate Mutex ==1 to the system 
Forking Simplify process …… 

No error found.  The system is safe :-) 

Figure 10.  Check result. 

（2）Verification with SPIN 

Through establishing Promela model of source code 
(Os_Core.c), we use model checker SPIN to analyze and 
verify the correctness of the code. We mainly focus on 
temporal safety proper. We simulate function calls into 
process. And we specify process interactions by channel 
to transfer function invocation (parameters transfer and 
return values). Promela model is shown in Fig.11 shown. 

#define OS_Is_Running 1 
#define OS_Not_Running 2 
int LOCK= 0; 
chan ENC=[1] of {byte}; 
chan EXC=[1] of {byte}; 
chan ETX=[1] of {byte}; 
chan returnvalue=[1] of {byte}; 
… 
proctype OSSchedMutex(int OSRunning, OSMutexNesting) 
{ 
byte Mutex; 
if 
::(OSRunning==1)->returnvalue!OS_Is_Running 
::else->returnvalue!OS_Not_Running; 
fi; 
if 

:: (OSRunning==OS_Is_Running)->ENC?Mutex; 
    if  
    ::(Mutex==1); 
        if 
        :: (OSMutexNesting < 255)->OSMutexNesting ++; 
            if 
            :: EXC?Mutex; 
            fi; 
        fi; 
    fi; 
fi; 
assert(LOCK==0); 
} 
proctype OS_ENTER_CRITICAL() 
{ 
if    
::(LOCK==0)->LOCK=1;ENC!1;ETX!1; 
::else->ENC!0; 
fi; 
} 
proctype OS_EXIT_CRITICAL() 
{ 
if 
::ETX?1; 

if 
::(LOCK==1)->LOCK=0;EXC!0; 
::else->EXC!1; 
fi; 

fi; 
} 
… 
init 
{ 
int x; 
run OS_ENTER_CRITICAL(); 
run OSSchedMutex(1,10); 
run OS_EXIT_CRITICAL(); 
returnvalue?x; 
printf("return: %d\n", x) 
} 

Figure 11.  Promela model. 

We established three processes with four channels. 
Process OSSchedMutex simulates main function of source 
code, process OS_ENTER_CRITICAL and process 
OS_EXIT_CRITICAL simulate synchronization 
relationship inter-process. The three processes are 
executed synchronously by channel. We run simulation 
execution of this program in SPIN. The sequence of 
simulation execution is shown in Fig.12. 

Then we verify this program in SPIN. SPIN generates 
a parser. The parser will be compiled and executed. Result 
of Verification will be displayed in the Verification 
Output window. If everything is normal, the result show 
no errors be found. And if there are some conditions 
without the right reach in execution, these statements will 
be highlighted in the main window. And we can run the 
counter-example in guided simulation.   Output of 
verification is shown in Fig.13. There are no error find in 
the code. 

We express the correctness requirements in LTL 
formulae by using the following definitions of 
propositional symbols: #define p (LOCK==0). And then 
use LTL formulae” <> p” to check whether this program is 
correctness as we specified. Verification result is shown in 
Fig.14. 
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SPIN is a generic effective verification system that 
supports the verification of asynchronous process systems. 
SPIN verification models are focused on proving the 
correctness of process interactions. Since SPIN uses its 
special modeling language Promela to model system, 
therefore we must abstract and model the system 
manually: transfer C to Promela. Using this manual 
method, modeling is complex and prone to making 
mistake. BLAST is not so. It is oriented software source 
program C. It can analyze C program mechanically. It is 
based on model abstraction, namely abstract the finite 
state space from program. 

 

Figure 12.  Sequence chart of simulation. 

 

Figure 13.  Verification Output. 

 

#define p (LOCK==0) 
never {    /* !(<>  p) */ 
accept_init: 
T0_init: 
 if 
 :: (! ((p))) -> goto T0_init 
 fi; 
}… 
depth 0: Claim reached state 3 (line 73) 
 (Spin Version 5.2.5 -- 17 April 2010) 
 + Partial Order Reduction 
Full statespace search for: 
 never claim          + 
 assertion violations + (if within scope of claim) 
 acceptance   cycles  + (fairness disabled) 
 invalid end states - (disabled by never claim) 
State-vector 44 byte, depth reached 0, errors: 0 
        1 states, stored 
        0 states, matched 
        1 transitions (= stored+matched) 
        0 atomic steps 
hash conflicts:         0 (resolved) 
… 
#endif 

Figure 14.  Verification result with LTL. 

V. CONCLUTIONS 

We have presented our experience in formally 
verifying system code. The challenges for formal 
verification at the kernel level relate to performance, size, 
and the level of abstraction. Since the early attempts at 
kernel verification there have been dramatic 
improvements in the power of available tools. Tools like 
Coq, BLAST and SPIN have been used in a number of 
successful verifications. This has led to a significant 
reduction in the cost of formal verification, and a lowering 
of the feasibility threshold. At the same time the potential 
benefits have increased. 

We take the theorem proving and model-checking as 
the main technical methods to resolve the key techniques 
of verifying OS kernel. Theorem proving method is 
combined with program correctness validation technology 
based on Hoare logic to establish the axiom semantics of 
C program. Coq is then used as an interactive theorem 
proving tool to prove program correctness. Utilizing two 
model-checkers, a model check approach with a modeling 
method based on C program and a formal specification 
method based on LTL to description system attributes has 
been developed. We have shown that full, rigorous, 
formal verification is practically achievable for OS kernel 
code with very reasonable effort compared to traditional 
development methods.  
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