International Journal of Image, Graphics and Signal Processing (IJIGSP)

ISSN: 2074-9074 (Print)

ISSN: 2074-9082 (Online)

DOI: https://doi.org/10.5815/ijigsp

Website: https://www.mecs-press.org/ijigsp

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 130

(IJIGSP) in Google Scholar Citations / h5-index

IJIGSP is committed to bridge the theory and practice of images, graphics, and signal processing. From innovative ideas to specific algorithms and full system implementations, IJIGSP publishes original, peer-reviewed, and high quality articles in the areas of images, graphics, and signal processing. IJIGSP is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of images, graphics, and signal processing applications.

 

IJIGSP has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..

Latest Issue
Most Viewed
Most Downloaded

IJIGSP Vol. 16, No. 2, Apr. 2024

REGULAR PAPERS

Metrological Complex for Electromagnetic Field Forming and Study of Electromagnetic Environment

By Ludvig Ilnitsky Olga Shcherbyna Leonid Sibruk Inna Mykhalchuk

DOI: https://doi.org/10.5815/ijigsp.2024.02.01, Pub. Date: 8 Apr. 2024

The article is devoted to the problems of constructing electromagnetic field with given parameters and both to the study of electromagnetic environment. For solving the problems, the corresponding theoretical material is presented. The functional relationships are considered that make it possible to construct the device for generating electromagnetic field with specified parameters in circular orthogonal polarization basis. The block diagram, which can ensure the specified field forming with acceptable errors are synthesized. Measurement of radiation characteristics, including polarization characteristics, requires the appropriate orientation of the receiving antenna to the direction of wave propagation. Corresponding algorithm and antenna system for this purpose is proposed. The study of the field polarization characteristics formed using the ring antenna elements is carried out. It is shown that in the broad frequency band, the ring elements can be replaced with spiral radiators, as well as that the antenna system for electromagnetic waves reception and their subsequent decomposition in circular polarization orthogonal basis, must contain at least eight antenna elements. Applied spiral flat antenna elements ensure the low level of cross-polarization due to the matched load on the spiral end, which is one of the conditions for successful polarization analysis. Besides, a device for polarization analysis of incident electromagnetic waves and the algorithm for measurement of the effective reflection area are considered.

[...] Read more.
Local Entropy-based Non Blind Robust Image Watermarking: Case of Medical Images

By Lamri Laouamer Mohannad Alswailim

DOI: https://doi.org/10.5815/ijigsp.2024.02.02, Pub. Date: 8 Apr. 2024

Medical data protection against illegal manipulations has become an essential and urgent issue. Unfortunately, images exchanged via networks are not absolutely protected against the preservation of integrity, authenticity and the right of use. Watermarking can play a very important role in dealing with this problem. For this reason, it becomes necessary to perform such watermarking in image regions where the disorder regarding the pixels distribution should be less when embedding secret data called watermark. In this paper, we propose a new approach of medical image watermarking in spatial domain with a non-blind way. This approach is based on one of the essential properties of image called Local Entropy (LE). The watermarking in the zones with less local entropy values guarantees a high imperceptibility of the watermark. The choice of the low local entropy is based on measuring or estimating changes in a zones or regions of the image. The watermark embedding consists only on pixels with less local entropy values since these pixels represent less disorder within the image. The results obtained are very encouraging and have been evaluated in terms of imperceptibility through the Peak Signal Noise Rate (PSNR) metric and evaluated also in terms of robustness by measuring the Correlation Coefficients (CC), Bit Error Ratio (BER) and Structural Similarity Index Measure (SSIM) between the original watermark and the extracted ones.

[...] Read more.
Multifractal Scaling of Singularity Spectra of Digital Mueller-matrix Images of Biological Tissues: Fundamental and Applied Aspects

By Oleksandr Ushenko Oleksandr Saleha Yuriy Ushenko Ivan Gordey Oleksandra Litvinenko

DOI: https://doi.org/10.5815/ijigsp.2024.02.03, Pub. Date: 8 Apr. 2024

The fundamental component of the work contains a summary of the theoretical foundations of the algorithms of the scale-self-similar approach for the analysis of digital Mueller-matrix images of birefringent architectonics of biological tissues. The theoretical consideration of multifractal analysis and determination of singularity spectra of fractal dimensions of coordinate distributions of matrix elements (Mueller-matrix images - MMI) of biological tissue preparations is based on the method of maxima of amplitude modules of the wavelet transform (WTMM). The applied part of the work is devoted to the comparison of diagnostic capabilities for determining the prescription of mechanical brain injury using algorithms of statistical (central statistical moments of the 1st - 4th orders), fractal (approximating curves to logarithmic dependences of power spectra) and multifractal (WTMM) analysis of MMI linear birefringence of fibrillar networks of neurons of nervous tissue. Excellent (~95%) accuracy of differential diagnosis of the prescription of mechanical injury has been achieved.

[...] Read more.
Balancing Simplification and Detail Preservation in Low Poly Image Abstraction through Edge-Preserved Seed Point Generation

By Philumon Joseph Binsu C. Kovoor Job Thomas

DOI: https://doi.org/10.5815/ijigsp.2024.02.04, Pub. Date: 8 Apr. 2024

Low poly image abstraction is an art form that has gained popularity in recent years, particularly in the digital art community. The process involves simplifying an image by reducing the number of polygons used to represent it while preserving its overall appearance and details. This paper proposes a new approach to low poly image abstraction that utilizes edge-preserved seed points to preserve important details while reducing triangle count. The proposed approach involves six steps. First, the input image is smoothed using an anisotropic diffusion filter. Second, the entropy of each pixel in the smoothed image is computed and stored in an entropy map. Third, seed points for Delaunay triangulation are selected by identifying pixels with maximum entropy values in the entropy map. Fourth, the Delaunay triangulation is generated using the seed points as input. Fifth, colors are assigned to the triangles in the Delaunay triangulation using a color selection module. Finally, the final low poly image is generated by rendering the colored Delaunay triangulation. The effectiveness of the proposed method was evaluated through qualitative and quantitative experiments, comparing its results with other comprehensive methods using a diverse range of images from a benchmark dataset. The results showed that the proposed method outperformed other methods in preserving image details while maintaining low polygon count. Additionally, the proposed method was found to be efficient and capable of producing visually appealing results.

[...] Read more.
Time-varying Comb Filters to Improve Speech Perception in Sensorineural Hearing Loss Subjects

By Aparna Chilakawad Pandurangarao N. Kulkarni

DOI: https://doi.org/10.5815/ijigsp.2024.02.05, Pub. Date: 8 Apr. 2024

In the case of Sensorineural Hearing Loss (SNHL) persons speech perception diminishes in a noisy environment because of masking. The present work aims mainly at improving speech perception in sensorineural hearing-impaired subjects, as there is no known medical treatment for this condition. Speech perception can be improved by reducing the impact of masking. This is accomplished by splitting the speech signal into two parts for binaural dichotic presentation using time-varying comb filters having complementary magnitude responses. Using the frequency sampling method time-varying comb (FIR) filters with magnitude responses complementary to each other with 512 order are designed to split the speech signal for dichotic presentation. For the purpose of designing filters, 22 kHz sampling frequency and twenty-two one-third octave bands spanning from 0 to 11 kHz are taken into consideration. Magnitude responses of filters are continuously swept with a time shift less than just noticeable difference (JND) so that capacity to detect gaps in speech signal enhances without negating the benefits of the spectral splitting technique. Filter functioning is evaluated by using objective and subjective measures. Using Perceptual Evaluation of Speech Quality (PESQ) and spectrographic analysis an objective evaluation is made. The subjective measure is done using Mean Opinion Score (MOS) for quality of speech. MOS test is examined on normal hearing subjects by adding white noise to study materials at different SNR levels. For the evaluation of intelligibility of speech Modified Rhyme Test (MRT) is considered and evaluated on normal hearing subjects as well as bilateral moderate SNHL persons by adding white noise to study materials at different SNR levels. Study materials used for the evaluation of quality are VC syllable /aa-b/ & vowel /aa/. 300 monosyllabic words of consonant-vowel-consonant (CVC) are used as study materials for the evaluation of speech intelligibility.
The outcomes showed an improvement in PESQ values and MOS test scores for lower SNR values comparing unprocessed speech with processed speech and also an improvement in the intelligibility of processed speech in a noisy atmosphere for both types of subjects. Thus there is an enhancement in speech perception of processed speech in a noisy environment.

[...] Read more.
Grayscale Image Colorization Method Based on U-Net Network

By Zhengbing Hu Oksana Shkurat Maksym Kasner

DOI: https://doi.org/10.5815/ijigsp.2024.02.06, Pub. Date: 8 Apr. 2024

A colorization method based on a fully convolutional neural network for grayscale images is presented in this paper. The proposed colorization method includes color space conversion, grayscale image preprocessing and implementation of improved U-Net network. The training and operating of the U-Net network take place for images represented in the space of the Lab color model. The trained U-Net network integrates realistic colors (generate data of a and b components) into grayscale images based on L-component data of the Lab color model. Median cut method of quantization is applied to L-component data before the training and operating of the U-Net network. Logistic activation function is applied to normalized results of convolution layers of the U-Net network. The proposed colorization method has been tested on ImageNet database. The evaluation results of the proposed method according to various parameters are presented. Colorization accuracy by the proposed method reachers more than 84.81%. The colorization method proposed in this paper is characterized by optimized architecture of convolution neural network that is able to train on a limited image set with a satisfactory training duration. The proposed colorization method can be used to improve the image quality and restoring data in the development of computer vision systems. The further research can be focused on the study of a technique of defining optimal number of the gray levels and the implementation of the combined quantization methods. Also, further research can be focused on the use of HSV, HLS and other color models for the training and operating of the neural network.

[...] Read more.
Drone Detection from Video Streams Using Image Processing Techniques and YOLOv7

By Muhammad K. Kabir Anika N. Binte Kabir Jahid H. Rony Jia Uddin

DOI: https://doi.org/10.5815/ijigsp.2024.02.07, Pub. Date: 8 Apr. 2024

For ensuring the safety issues, a country should establish a secure monitoring system around the most important places. Due to the huge development in unmanned aerial vehicles (UAV), drone detection is a vital part of the safety monitoring system for reducing threats from neighboring countries or terrorist groups. This paper presents a deep learning-based drone detection method. A You Only Look Once (YOLO) v7 architecture is used to train on the dataset. The training dataset consists of drone images in various environments. The trained model was tested on multiple videos of drones from YouTube. Experimental results demonstrate that the model exhibited a recall of 0.9656 and a precision of 0.9509. In addition, the performance of the model compares with the state-of-art models with YOLOv8, YOLO-NAS, Faster-RCNN architectures and it outperforms the other models by maintaining a more stable precision and recall curve.

[...] Read more.
Modified Political Optimization Algorithm Adapted Deep Neural Networks for Early Plant Disease Detection

By Rina Bora Deepa Parasar Shrikant Charhate

DOI: https://doi.org/10.5815/ijigsp.2024.02.08, Pub. Date: 8 Apr. 2024

To prevent the loss of the yield of food crops and to attain sustainable agricultural growth, accurate detection of plant disease at an early stage is crucial. However, the extraction of crucial features from infected plant leaves to differentiate the properties associated with different diseases is a complex task, as the diseases exhibit huge variations, which insists on the need for developing precise disease detection. Hence in this research, the early detection of plant disease is performed by utilizing a Modified political optimization adapted deep Neural Network (MPO-adapted deep NN) model, in which the continuous learning capability of the deep NN classifier helps in the deeper analysis of the information in the image and identifies the plant disease more accurately. Identification of the plant disease posse’s challenges due to complexities present in the image and the neural networks effectively dwells with the complex relationships and the non-linear characteristics of the network help in achieving adaptability and makes the system more suitable for real-time applications. The main contribution relies on the modified political optimization algorithm that efficiently tunes the parameters of the deep NN classifier to analyze the disease patterns effectively and provides disease detection with high accuracy. Further, the Adaptive K-means algorithm is utilized for the effective segmentation of diseased parts, and the Grey level co-occurrence matrix (GLCM) features are extracted in the method that enhances the accuracy of the detection. When compared to the existing techniques, the MPO-adapted deep NN model attains high accuracy, sensitivity, and specificity values of 98.95%, 97.45%, and 98.95% for cotton leaf, 94.47%, 94.58%, 94.54% for cotton root, 99.10%, 99.10%, 99.10% for cotton stem, respectively concerning the k-fold. Analysis demonstrating the superiority of the research's metrics values measurement. When compared to existing methods, detecting the disease in cotton stems is very effective.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Radio Receiver with Internal Compression of Input Signals Using a Dispersive Delay Line with Bandpass Filters

By Roman Pantyeyev Felix Yanovsky Andriy Mykolushko Volodymyr Shutko

DOI: https://doi.org/10.5815/ijigsp.2023.06.01, Pub. Date: 8 Dec. 2023

This article proposes a receiving device in which arbitrary input signals are subject to pre-detector processing for the subsequent implementation of the idea of compressing broadband modulated pulses with a matched filter to increase the signal-to-noise ratio and improve resolution. For this purpose, a model of a dispersive delay line is developed based on series-connected high-frequency time delay lines with taps in the form of bandpass filters, and analysis of this model is performed as a part of the radio receiving device with chirp signal compression. The article presents the mathematical description of the processes of formation and compression of chirp signals based on their matched filtering using the developed model and proposes the block diagram of a radio receiving device using the principle of compression of received signals. The proposed model can be implemented in devices for receiving unknown signals, in particular in passive radar. It also can be used for studying signal compression processes based on linear frequency modulation in traditional radar systems.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
A Review on Image Reconstruction through MRI k-Space Data

By Tanuj Kumar Jhamb Vinith Rejathalal V.K. Govindan

DOI: https://doi.org/10.5815/ijigsp.2015.07.06, Pub. Date: 8 Jun. 2015

Image reconstruction is the process of generating an image of an object from the signals captured by the scanning machine. Medical imaging is an interdisciplinary field combining physics, biology, mathematics and computational sciences. This paper provides a complete overview of image reconstruction process in MRI (Magnetic Resonance Imaging). It reviews the computational aspect of medical image reconstruction. MRI is one of the commonly used medical imaging techniques. The data collected by MRI scanner for image reconstruction is called the k-space data. For reconstructing an image from k-space data, there are various algorithms such as Homodyne algorithm, Zero Filling method, Dictionary Learning, and Projections onto Convex Set method. All the characteristics of k-space data and MRI data collection technique are reviewed in detail. The algorithms used for image reconstruction discussed in detail along with their pros and cons. Various modern magnetic resonance imaging techniques like functional MRI, diffusion MRI have also been introduced. The concepts of classical techniques like Expectation Maximization, Sensitive Encoding, Level Set Method, and the recent techniques such as Alternating Minimization, Signal Modeling, and Sphere Shaped Support Vector Machine are also reviewed. It is observed that most of these techniques enhance the gradient encoding and reduce the scanning time. Classical algorithms provide undesirable blurring effect when the degree of phase variation is high in partial k-space. Modern reconstructions algorithms such as Dictionary learning works well even with high phase variation as these are iterative procedures.

[...] Read more.
Fast Encryption Scheme for Secure Transmission of e-Healthcare Images

By Devisha Tiwari Bhaskar Mondal Anil Singh

DOI: https://doi.org/10.5815/ijigsp.2023.05.07, Pub. Date: 8 Oct. 2023

E-healthcare systems (EHSD), medical communications, digital imaging (DICOM) things have gained popularity over the past decade as they have become the top contenders for interoperability and adoption as a global standard for transmitting and communicating medical data. Security is a growing issue as EHSD and DICOM have grown more usable on any-to-any devices. The goal of this research is to create a privacy-preserving encryption technique for EHSD rapid communication with minimal storage. A new 2D logistic-sine chaotic map (2DLSCM) is used to design the proposed encryption method, which has been developed specifically for peer-to-peer communications via unique keys. Through the 3D Lorenz map which feeds the initial values to it, the 2DLSCM is able to provide a unique keyspace of 2544 bits (2^544bits) in each go of peer-to-peer paired transmission. Permutation-diffusion design is used in the encryption process, and 2DLSCM with 3DLorenz system are used to generate unique initial values for the keys. Without interfering with real-time medical transmission, the approach can quickly encrypt any EHSD image and DICOM objects. To assess the method, five distinct EHSD images of different kinds, sizes, and quality are selected. The findings indicate strong protection, speed, and scalability when compared to existing similar methods in literature.

[...] Read more.
Real-Time Vehicle Detection for Surveillance of River Dredging Areas Using Convolutional Neural Networks

By Mohammed Abduljabbar Zaid Al Bayati Muhammet Cakmak

DOI: https://doi.org/10.5815/ijigsp.2023.05.02, Pub. Date: 8 Oct. 2023

The presence of illegal activities such as illegitimate mining and sand theft in river dredging areas leads to economic losses. However, manual monitoring is expensive and time-consuming. Therefore, automated surveillance systems are preferred to mitigate such activities, as they are accurate and available at all times. In order to monitor river dredging areas, two essential steps for surveillance are vehicle detection and license plate recognition. Most current frameworks for vehicle detection employ plain feed-forward Convolutional Neural Networks (CNNs) as backbone architectures. However, these are scale-sensitive and cannot handle variations in vehicles' scales in consecutive video frames. To address these issues, Scale Invariant Hybrid Convolutional Neural Network (SIH-CNN) architecture is proposed for real-time vehicle detection in this study. The publicly available benchmark UA-DETRAC is used to validate the performance of the proposed architecture. Results show that the proposed SIH-CNN model achieved a mean average precision (mAP) of 77.76% on the UA-DETRAC benchmark, which is 3.94% higher than the baseline detector with real-time performance of 48.4 frames per seconds.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
An Efficient Brain Tumor Detection Algorithm Using Watershed & Thresholding Based Segmentation

By Anam Mustaqeem Engr Ali Javed Tehseen Fatima

DOI: https://doi.org/10.5815/ijigsp.2012.10.05, Pub. Date: 28 Sep. 2012

During past few years, brain tumor segmentation in magnetic resonance imaging (MRI) has become an emergent research area in the ?eld of medical imaging system. Brain tumor detection helps in finding the exact size and location of tumor. An efficient algorithm is proposed in this paper for tumor detection based on segmentation and morphological operators. Firstly quality of scanned image is enhanced and then morphological operators are applied to detect the tumor in the scanned image.

[...] Read more.
Image Denoising based on Enhanced Wavelet Global Thresholding Using Intelligent Signal Processing Algorithm

By Joseph Isabona Agbotiname Lucky Imoize Stephen Ojo

DOI: https://doi.org/10.5815/ijigsp.2023.05.01, Pub. Date: 8 Oct. 2023

Denoising is a vital aspect of image preprocessing, often explored to eliminate noise in an image to restore its proper characteristic formation and clarity. Unfortunately, noise often degrades the quality of valuable images, making them meaningless for practical applications. Several methods have been deployed to address this problem, but the quality of the recovered images still requires enhancement for efficient applications in practice. In this paper, a wavelet-based universal thresholding technique that possesses the capacity to optimally denoise highly degraded noisy images with both uniform and non-uniform variations in illumination and contrast is proposed. The proposed method, herein referred to as the modified wavelet-based universal thresholding (MWUT), compared to three state-of-the-art denoising techniques, was employed to denoise five noisy images. In order to appraise the qualities of the images obtained, seven performance indicators comprising the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Structural Content (SC), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Method (SSIM), Signal-to-Reconstruction-Error Ratio (SRER), Blind Spatial Quality Evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) were employed. The first five indicators – RMSE, MAE, SC, PSNR, SSIM, and SRER- are reference indicators, while the remaining two – NIQE and BRISQUE- are referenceless. For the superior performance of the proposed wavelet threshold algorithm, the SC, PSNR, SSIM, and SRER must be higher, while lower values of NIQE, BRISQUE, RMSE, and MAE are preferred. A higher and better value of PSNR, SSIM, and SRER in the final results shows the superior performance of our proposed MWUT denoising technique over the preliminaries. Lower NIQE, BRISQUE, RMSE, and MAE values also indicate higher and better image quality results using the proposed modified wavelet-based universal thresholding technique over the existing schemes. The modified wavelet-based universal thresholding technique would find practical applications in digital image processing and enhancement.

[...] Read more.
A Review of Self-supervised Learning Methods in the Field of Medical Image Analysis

By Jiashu Xu

DOI: https://doi.org/10.5815/ijigsp.2021.04.03, Pub. Date: 8 Aug. 2021

In the field of medical image analysis, supervised deep learning strategies have achieved significant development, while these methods rely on large labeled datasets. Self-Supervised learning (SSL) provides a new strategy to pre-train a neural network with unlabeled data. This is a new unsupervised learning paradigm that has achieved significant breakthroughs in recent years. So, more and more researchers are trying to utilize SSL methods for medical image analysis, to meet the challenge of assembling large medical datasets. To our knowledge, so far there still a shortage of reviews of self-supervised learning methods in the field of medical image analysis, our work of this article aims to fill this gap and comprehensively review the application of self-supervised learning in the medical field. This article provides the latest and most detailed overview of self-supervised learning in the medical field and promotes the development of unsupervised learning in the field of medical imaging. These methods are divided into three categories: context-based, generation-based, and contrast-based, and then show the pros and cons of each category and evaluates their performance in downstream tasks. Finally, we conclude with the limitations of the current methods and discussed the future direction.

[...] Read more.
Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

By Dhirendra Pal Singh Ashish Khare

DOI: https://doi.org/10.5815/ijigsp.2015.02.06, Pub. Date: 8 Jan. 2015

Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

[...] Read more.
Breast Cancer Classification from Ultrasound Images using VGG16 Model based Transfer Learning

By A. B. M. Aowlad Hossain Jannatul Kamrun Nisha Fatematuj Johora

DOI: https://doi.org/10.5815/ijigsp.2023.01.02, Pub. Date: 8 Feb. 2023

Ultrasound based breast screening is gaining attention recently especially for dense breast. The technological advancement, cancer awareness, and cost-safety-availability benefits lead rapid rise of breast ultrasound market. The irregular shape, intensity variation, and additional blood vessels of malignant cancer are distinguishable in ultrasound images from the benign phase. However, classification of breast cancer using ultrasound images is a difficult process owing to speckle noise and complex textures of breast. In this paper, a breast cancer classification method is presented using VGG16 model based transfer learning approach. We have used median filter to despeckle the images. The layers for convolution process of the pretrained VGG16 model along with the maxpooling layers have been used as feature extractor and a proposed fully connected two layers deep neural network has been designed as classifier. Adam optimizer is used with learning rate of 0.001 and binary cross-entropy is chosen as the loss function for model optimization. Dropout of hidden layers is used to avoid overfitting. Breast Ultrasound images from two databases (total 897 images) have been combined to train, validate and test the performance and generalization strength of the classifier. Experimental results showed the training accuracy as 98.2% and testing accuracy as 91% for blind testing data with a reduced of computational complexity. Gradient class activation mapping (Grad-CAM) technique has been used to visualize and check the targeted regions localization effort at the final convolutional layer and found as noteworthy. The outcomes of this work might be useful for the clinical applications of breast cancer diagnosis.

[...] Read more.
Retinal Image Segmentation for Diabetic Retinopathy Detection using U-Net Architecture

By Swapnil V. Deshmukh Apash Roy Pratik Agrawal

DOI: https://doi.org/10.5815/ijigsp.2023.01.07, Pub. Date: 8 Feb. 2023

Diabetic retinopathy is one of the most serious eye diseases and can lead to permanent blindness if not diagnosed early. The main cause of this is diabetes. Not every diabetic will develop diabetic retinopathy, but the risk of developing diabetes is undeniable. This requires the early diagnosis of Diabetic retinopathy. Segmentation is one of the approaches which is useful for detecting the blood vessels in the retinal image. This paper proposed the three models based on a deep learning approach for recognizing blood vessels from retinal images using region-based segmentation techniques. The proposed model consists of four steps preprocessing, Augmentation, Model training, and Performance measure. The augmented retinal images are fed to the three models for training and finally, get the segmented image. The proposed three models are applied on publically available data set of DRIVE, STARE, and HRF. It is observed that more thin blood vessels are segmented on the retinal image in the HRF dataset using model-3. The performance of proposed three models is compare with other state-of-art-methods of blood vessels segmentation of DRIVE, STARE, and HRF datasets.

[...] Read more.
A Review on Image Reconstruction through MRI k-Space Data

By Tanuj Kumar Jhamb Vinith Rejathalal V.K. Govindan

DOI: https://doi.org/10.5815/ijigsp.2015.07.06, Pub. Date: 8 Jun. 2015

Image reconstruction is the process of generating an image of an object from the signals captured by the scanning machine. Medical imaging is an interdisciplinary field combining physics, biology, mathematics and computational sciences. This paper provides a complete overview of image reconstruction process in MRI (Magnetic Resonance Imaging). It reviews the computational aspect of medical image reconstruction. MRI is one of the commonly used medical imaging techniques. The data collected by MRI scanner for image reconstruction is called the k-space data. For reconstructing an image from k-space data, there are various algorithms such as Homodyne algorithm, Zero Filling method, Dictionary Learning, and Projections onto Convex Set method. All the characteristics of k-space data and MRI data collection technique are reviewed in detail. The algorithms used for image reconstruction discussed in detail along with their pros and cons. Various modern magnetic resonance imaging techniques like functional MRI, diffusion MRI have also been introduced. The concepts of classical techniques like Expectation Maximization, Sensitive Encoding, Level Set Method, and the recent techniques such as Alternating Minimization, Signal Modeling, and Sphere Shaped Support Vector Machine are also reviewed. It is observed that most of these techniques enhance the gradient encoding and reduce the scanning time. Classical algorithms provide undesirable blurring effect when the degree of phase variation is high in partial k-space. Modern reconstructions algorithms such as Dictionary learning works well even with high phase variation as these are iterative procedures.

[...] Read more.
Edibility Detection of Mushroom Using Ensemble Methods

By Nusrat Jahan Pinky S.M. Mohidul Islam Rafia Sharmin Alice

DOI: https://doi.org/10.5815/ijigsp.2019.04.05, Pub. Date: 8 Apr. 2019

Mushrooms are the most familiar delicious food which is cholesterol free as well as rich in vitamins and minerals. Though nearly 45,000 species of mushrooms have been known throughout the world, most of them are poisonous and few are lethally poisonous. Identifying edible or poisonous mushroom through the naked eye is quite difficult. Even there is no easy rule for edibility identification using machine learning methods that work for all types of data. Our aim is to find a robust method for identifying mushrooms edibility with better performance than existing works. In this paper, three ensemble methods are used to detect the edibility of mushrooms: Bagging, Boosting, and random forest. By using the most significant features, five feature sets are made for making five base models of each ensemble method. The accuracy is measured for ensemble methods using five both fixed feature set-based models and randomly selected feature set based models, for two types of test sets. The result shows that better performance is obtained for methods made of fixed feature sets-based models than randomly selected feature set-based models. The highest accuracy is obtained for the proposed model-based random forest for both test sets.

[...] Read more.
Real-Time Video based Human Suspicious Activity Recognition with Transfer Learning for Deep Learning

By Indhumathi .J Balasubramanian .M Balasaigayathri .B

DOI: https://doi.org/10.5815/ijigsp.2023.01.05, Pub. Date: 8 Feb. 2023

Nowadays, the primary concern of any society is providing safety to an individual. It is very hard to recognize the human behaviour and identify whether it is suspicious or normal. Deep learning approaches paved the way for the development of various machine learning and artificial intelligence. The proposed system detects real-time human activity using a convolutional neural network. The objective of the study is to develop a real-time application for Activity recognition using with and without transfer learning methods. The proposed system considers criminal, suspicious and normal categories of activities. Differentiate suspicious behaviour videos are collected from different peoples(men/women). This proposed system is used to detect suspicious activities of a person. The novel 2D-CNN, pre-trained VGG-16 and ResNet50 is trained on video frames of human activities such as normal and suspicious behaviour. Similarly, the transfer learning in VGG16 and ResNet50 is trained using human suspicious activity datasets. The results show that the novel 2D-CNN, VGG16, and ResNet50 without transfer learning achieve accuracy of 98.96%, 97.84%, and 99.03%, respectively. In Kaggle/real-time video, the proposed system employing 2D-CNN outperforms the pre-trained model VGG16. The trained model is used to classify the activity in the real-time captured video. The performance obtained on ResNet50 with transfer learning accuracy of 99.18% is higher than VGG16 transfer learning accuracy of 98.36%. 

[...] Read more.
Algorithm of Processing Navigation Information in Systems of Quadrotor Motion Control

By Anatoly Tunik Olha Sushchenko Svitlana Ilnytska

DOI: https://doi.org/10.5815/ijigsp.2023.01.01, Pub. Date: 8 Feb. 2023

The article deals with creating an algorithm for processing information in a digital system for quadrotor flight control. The minimization of L2-gain using simple parametric optimization for the synthesis of the control algorithm based on static output feedback is proposed. The kinematical diagram and mathematical description of the linearized quadrotor model are represented. The transformation of the continuous model into a discrete one has been implemented. The new optimization procedure based on digital static output feedback is developed. Expressions for the optimization criterion and penalty function are given. The features of the creating algorithm and processing information are described. The development of the closed-loop control system with an extended model augmented with some essential nonlinearities inherent to the real control plant is implemented. The simulation of the quadrotor guidance in the turbulent atmosphere has been carried out. The simulation results based on the characteristics of the studied quadrotor are represented. These results prove the efficiency of the proposed algorithm for navigation information processing. The obtained results can be useful for signal processing and designing control systems for unmanned aerial vehicles of the wide class.

[...] Read more.
Radio Receiver with Internal Compression of Input Signals Using a Dispersive Delay Line with Bandpass Filters

By Roman Pantyeyev Felix Yanovsky Andriy Mykolushko Volodymyr Shutko

DOI: https://doi.org/10.5815/ijigsp.2023.06.01, Pub. Date: 8 Dec. 2023

This article proposes a receiving device in which arbitrary input signals are subject to pre-detector processing for the subsequent implementation of the idea of compressing broadband modulated pulses with a matched filter to increase the signal-to-noise ratio and improve resolution. For this purpose, a model of a dispersive delay line is developed based on series-connected high-frequency time delay lines with taps in the form of bandpass filters, and analysis of this model is performed as a part of the radio receiving device with chirp signal compression. The article presents the mathematical description of the processes of formation and compression of chirp signals based on their matched filtering using the developed model and proposes the block diagram of a radio receiving device using the principle of compression of received signals. The proposed model can be implemented in devices for receiving unknown signals, in particular in passive radar. It also can be used for studying signal compression processes based on linear frequency modulation in traditional radar systems.

[...] Read more.