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Abstract—The ontology alignment consists in generating 

a set of correspondences between entities. These entities 

can be concepts, properties or instances. The ontology 

alignment is an important task because it allows the joint 

consideration of resources described by different 

ontologies. This paper aims at counting all works of the 

ontology alignment field and analyzing the approaches 

according to different techniques (terminological, 

structural, extensional and semantic). This can clear the 

way and help researchers to choose the appropriate 

solution to their issue. They can see the insufficiency, so 

that they can propose new approaches for stronger 

alignment. They can also adapt or reuse alignment 

techniques for specific research issues, such as semantic 

annotation, maintenance of links between entities, etc. 

 

Index Terms—Ontology Alignment, Terminological 

Method, Structural Method, Extensional Method, 

Semantic Method. 

 

I.  INTRODUCTION 

The rapid development of Internet technology 

generated a growing interest in research on the sharing 

and integrating dispersed resources in a distributed 

environment. The Semantic Web offers the possibility for 

software agents to understand resources semantically 

linked in a decentralized architecture. Ontologies have 

been recognized as an essential component for sharing 

knowledge and realizing this vision. By defining concepts 

associated with particular areas, ontologies allow both to 

describe the content of the resources to be integrated, and 

to clarify the vocabulary used in queries of users. 

However, it is unlikely that a global ontology covering all 

distributed systems can be developed. In practice, 

ontologies of different systems have been developed 

independently of each other by different communities. 

Thus, if knowledge and data have to be shared, it is 

essential to establish semantic correspondences between 

the concerned ontologies. The ontology alignment task is 

important because it allows the joint consideration of 

resources described by different ontologies. 

The Ontology Alignment is a complex task based on 

similarity measures. Many studies have been performed, 

but most of time only one measure is revealing 

insufficient to detect a similarity. Different approaches 

combining several measures sequentially were proposed: 

this combination is performed a priori, and it is not 

modified. The approaches should be more promising. 

Our objective is to study, analyze and examine deferent 

alignment techniques and approaches that employ these 

techniques. 

The rest of the paper is organized as follows: Section 2 

describes techniques and methods used in the literature to 

address the research issue of similarity and dissimilarity, 

or correspondence between two entities in general. The 

deferent approaches that employ these techniques will be 

presented in Section 3. Section 4 presents statistics 

describing the rate of use of alignment techniques 

(terminological, structural, semantic and extensional) by 

different approaches. Finally, we conclude our work and 

mention some perspectives. 

 

II.  ALIGNMENT TECHNIQUES 

The Ontology Alignment is performed according to a 

strategy or a combination of techniques for calculating 

similarity measures, and it uses a set of parameters (e.g., 

weighting parameters, thresholds, etc.) and a set of 

external resources (e.g., thesaurus, dictionary, etc.). At 

the end, we obtain a set of semantic links between the 

entities that compose the ontologies. There are several 

methods for calculating similarity between entities of 

several ontologies. Classifications of Alignment 

techniques are given in [94], [95] and [96]. 

A.  Terminological methods 

These methods are based on the comparison of terms, 
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strings or texts. They are used to calculate the value of 

similarity between units of text, such as names, labels, 

comments, descriptions, etc. These methods can be 

further divided into two sub-categories: methods that 

compare the terms based on characters in these terms, and 

methods using some linguistic knowledge. 

B.  Structural methods 

These methods calculate the similarity between two 

entities by exploiting structural information, when the 

concerned entities are connected to the others by 

semantic or syntactic links, forming a hierarchy or a 

graph of entities.  

We call: 

 

 Internal structural methods, methods that only 

exploit information about entity attributes,  

 External structural methods, methods that consider 

relations between entities. 

C.  Extensional methods 

These methods infer the similarity between two entities, 

especially concepts or classes, by analyzing their 

extensions, i.e. their instances. 

D.  Semantic methods 

Techniques based on the external ontologies: When 

two ontologies have to be aligned, it is preferable that the 

comparisons are done according to a common knowledge. 

Thus, these techniques use an intermediate formal 

ontology to meet that need. This ontology will define a 

common context [35] for the two ontologies to be aligned. 
Deductive techniques: Semantic methods are based on 

logical models, such as propositional satisfiability (SAT), 

SAT modal or description logics. They are also based on 

deduction methods to deduce the similarity between two 

entities. Techniques of description logics, such as the 

subsumption test, can be used to verify the semantic 

relations between entities, such as equivalence (similarity 

is equal to 1), the subsumption (similarity is between 0 

and 1) or the exclusion (similarity is equal to 0), and 

therefore used to deduce the similarity between the 

entities. 

These alignment techniques are integrated into 

approaches for mapping ontologies. We find approaches 

that combine multiple alignment techniques. Much work 

has been developed in the area of Ontology and focus on 

the alignment techniques. 

 

III.  ALIGNMENT APPROACHES 

The literature counts a wide range of methods [31]. 

These are from various communities, such as information 

retrieval, databases, learning, knowledge engineering, 

automatic natural language processing, etc. 

In [19] the authors consider a context where experts 

can use their own ontologies, called personal ontologies. 

Ontology is then represented by a support in the 

conceptual graph formalism. This support comprises a 

grid concept types, a hierarchy of relations types and a set 

of markers for the identification of instances. 

The objective is to build a common knowledge model 

(common ontology) from different knowledge models of 

experts (personal ontology). This is realized, in a system 

called MULTIKAT, by comparing personal ontologies 

using techniques based on operations of the conceptual 

graph formalism or the structure of graphs. 

Anchor-PROMPT [68] constructed a labeled oriented 

graph representing the ontology from the hierarchy of 

concepts (called classes in the algorithm) and the 

hierarchy of relations (called slots in the algorithm), 

where nodes in the graph are concepts and the arcs denote 

relations between concepts (labels of arcs are the names 

of relations). An initial list of anchor pairs (pairs of 

similar concepts) defined by the user or automatically 

identified by the lexicological mapping serves as input to 

the algorithm. Anchor-PROMPT then analysis paths in 

the sub-graphs limited by anchors, and determines which 

concepts appear frequently in similar positions on the 

similar paths. 

GLUE [21] is the advanced version of LSD [20] which 

aims to find semi-automatic mappings between schemas 

for data integration. Like LSD, GLUE uses the learning 

technique (such as the naive Bayes learning technique) to 

find matches between two ontologies. GLUE includes 

several learning modules (Learners), which are entrained 

by instances of ontologies.  

S-Match [34] is an algorithm and a system for 

semantically searching for correspondences based on the 

idea of using the engine of propositional satisfiability 

(SAT) [35] for the mapping schema issue. It takes as 

input two graphs of concepts (schemas), and generates as 

outputs relations between concepts, such as equivalence, 

overlapping, difference (mismatch), more general or 

more specific. The principal idea of this approach is to 

use logic to encode the concept of a node in the graph and 

applying SAT for reports. 

COMA [22] is a system to match schemas (of 

databases, XML or ontologies) automatically or manually. 

The system provides a library of basic mapping 

algorithms (called matchers) and some mechanisms for 

combining results of the basic algorithms to get a final 

similarity value of two elements in two schemas. 

OLA [30] is an algorithm to align ontologies 

represented in OWL. He tries to calculate the similarity 

of two entities in two ontologies based on their 

characteristics (their types: class, relations or instance; 

their reports with other entities: subclass, domain, co-

domain ...) and combine the similarity values calculated 

for each pair of entities homogeneously. 

It is further noted that: 

 

 The approaches, coma and COMA ++, S-Match, 

manage many types of ontologies. 

  The approaches, DCM, HSM, IceQ, their inputs 

have multiple ontologies. 

 The approaches, coma and COMA++ and 

GeRoMeSuite, their internal presentations are 

oriented acyclic graphs. 

 Most of systems focus on the discovery of simple 
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correspondences one-to-one. Although only a few 

systems have attempted to solve the problem of 

discovering more complex correspondences, such 

as IMAP, DCM, HSM, AOA, PORSCHE Optima 

Optima+.   

 The approaches S-Match, DSSim and TaxoMap 

calculate the similarity measures between different 

entities of the ontology, as disjunction and 

subsumption. However, the other approaches only 

calculate the equivalence relations. 

 Several approaches have introduced new ways for 

encoding the alignment process. For example, 

iMatch and CODI use the Markov networks. 

Others, like PARIS, propose interesting 

imbrications between the data links and the 

alignment schema. Other approaches, as VSBM 

and GBM, analyze also the image data. 

 Many recent approaches (eg. Scarlet, OMviaUO 

BLOOMS & BLOOMS++) use, beside WordNet, 

other knowledge base sources, such as Wikipedia 

and ontologies. 

 Several recent approaches have introduced the 

alignment check in the matching process, like Lily, 

YAM++ and LogMap. 

 The approaches, Falcon, Anchor-Flood, Lily, 

AgreementMaker, LogMap FSM and effectively 

manage large-scale ontologies. 

 The approaches, COMA++, S-Match, 

AgreementMaker, DSSim, Sambo and YAM++, 

are equipped with a graphical user interface. 

 

Table.1. summarizes the schema and ontology 

alignment approaches. In fact, many approaches use the 

same techniques based on strings. We note also that some 

approaches use WordNet as an external resource. 

In turn, the semantic measures are used only in some 

approaches, for example, CtxMatch, S-Match and 

LogMap. 

The Input column represents the inputs of the systems. 

The Needs column represents the resources to be 

available to star the system. This covers the manual 

aspect, referenced by "USER" in the table, when the 

user's back is required; "SEMI" when the system can take 

advantage of the user feedback; but can be 

"AUTOMATIC" when the system operates without the 

user intervention. The "INSTANCES" value indicates 

that the system requires data instances. 

The columns, Terminological Measures, Structural 

Measures, Extensional Measures and Semantic Measures, 

specify the alignment techniques adopted by the approach 

in question. 

Table 1. Summary of alignment approaches 

Approach Input Needs 
Terminological 

Measures 

Structural 

Measures 

Extensional 

Measures 

Semantic 

Measures 
Observation 

T-tree 
[29] 

Ontologies 
AUTO, 

INSTANCES 
 Correlation    

SEMINT 

[52] 

Relational 

schema 

AUTO, 

INSTANCES 

Neural network, 

Data types 
 

Constraint-

based 
  

DELTA 
[9] 

Relational 

schema, 
EER 

USER  String-based     

Hovy 
[41] 

Ontologies SEMI 

String-based, 

Language-
based 

Taxonomic    

Cupid 

[58] 

XML schema, 

Relational 
schema 

AUTO 

String-based, 

Language-
based, 

Data types, 

Auxiliary 

thesaurus 

Tree matching 

weighted by 
leaves 

   

LSD 

[17] 

XML schema, 

Relational 
schema 

AUTO, 

INSTANCES 
Naive Bayes, 

Hierarchical 

structure 

Constraint-

based 
  

COMA/ 

COMA++ 

[16] 

XML schema, 

Relational 
schema 

OWL 

USER  

String-based, 
Language-

based, 
Data types, 

Auxiliary 

thesaurus  

DAG (tree) 

matching with 
a bias towards 

various 
structures, e.g., 

leaves, 

Repository of 
structures 

   

Similarity 

flooding 
[63] 

XML schema, 

Relational 
schema 

USER  
String-based, 

Data types 

Iterative fixed 

point 
computation 

   

XClust 
[50] 

DTD AUTO 
Cardinality, 

WordNet 

Paths, 

Children, 
Leaves, 

Clustering 

Constraint-
based 

  

Automatch 
[4] 

Relational 
schema 

AUTO, 
INSTANCES 

Naive Bayes, 

Internal 

structure, 

Statistics 
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 [92] 
XML schema, 

Taxonomy 

AUTO, 

INSTANCES 

String-based, 

Language-based, 
WordNet 

    

IF-Map 

[53] 
KIF, RDF 

AUTO, 

INSTANCES 
String-based  

Formal concept 

analysis  
   

SBI&NB 
[42] 

Classification 
AUTO, 

INSTANCES 
Statistics, 

Naive Bayes, 

Pachinko 

Machine, Naive 

Bayes 

   

[54] 
Relational 

schema 
INSTANCES Language-based 

Mutual 

information, 

Dependency 
graph matching 

   

S-Match 

[33] 

Classification, 

XML schema,  
OWL 

AUTO 

String-based, 

Language-based, 
WordNet 

  
Propositional 

SAT  
 

GLUE 

[18] 

XML schema, 

Relational 

schema, 

Taxonomic  

AUTO, 

INSTANCES 
Naive Bayes, 

Hierarchical 

structure 

Instances-

Based,  

Constraint-

based 

  

iMAP 
[13] 

Relational 
schema 

AUTO, 
INSTANCES 

Naive Bayes, 
Hierarchical 

structure 
Constraint-

based 
  

ASCO 

[3] 

RDFS,  

OWL 
AUTO  

String-based, 

Language-based, 
WordNet 

Iterative 

similarity 
propagation 

   

[89] Web form INSTANCES Language-based 
Mutual 

information 
  Data Integration  

NOM 

[26] 

RDF,  

OWL 

AUTO, 

INSTANCES 
String-based 

Matching of 
neighbours, 

Taxonomic 
structure 

   

QOM 
[27] 

RDF,  
OWL 

AUTO, 
INSTANCES 

String-based, 

Domain, 
Application, 

Vocabulary 

Matching of 

neighbours, 
Taxonomic 

structure  

   

IceQ 

[91] 
Web form 

AUTO,  

SEMI 
String-based Clustering 

Constraint-

based 
  

OLA 

[30] 

RDF,  

OWL 

AUTO, 

INSTANCES 

String-based, 

Language-based, 

Data type, 
WordNet 

Iterative fixed 

point 

computation, 
Matching of 

neighbours, 
Taxonomic 

structure  

   

[79] WSDL AUTO 
String-based, 

Language-based, 

WordNet 

Structure 

comparison  
   

MWSDI 

[69] 

WSDL,  

OWL 
AUTO 

String-based, 
Language-based, 

WordNet 

Structure 

comparison 
   

BayesOWL 
[70] 

Classification, 
OWL 

AUTO 
Text classifier, 

Google 
Bayesian 
inference 

   

OMEN 
[64] 

OWL 
AUTO, 

ALIGNEMENT 
 

Bayesian 

inference, 

Meta-rules 

   

DCM 

[8] 
Web form AUTO  

Correlation, 

Statistics 
  

Data integration 

 

Dumas 

[5] 

Relational 

schema 
INSTANCES String-based 

Instance 

identification 
   

oMap 
[78] 

OWL 
AUTO, 

INSTANCES 
Naive Bayes,, 
String-based 

Similarity 

propagation 

 

  
Query 
answering 

eTuner 
[76] 

Relational 

schema, 

Taxonomy 

AUTO      

SAMBO 

[51] 
OWL 

AUTO, 

DOCUMENTS 

String-based, 

Naive Bayes,, 
WordNet 

Iterative 

structural 

similarity based 
on is-a, part-of 

hierarchies 

  
Ontology 

merging 

AROMA 
[12] 

Classification, 
OWL 

AUTO, 
INSTANCES 

String-based 
Association 
rules 
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RiMOM 
[83] 

OWL 
AUTO, 

INSTANCES 

String-

based, 
Naive 

Bayes,, 
WordNet 

Taxonomic 

structure, 
Similarity 

propagation 

   

LCS 

[46] 

RDF,  

OWL 
AUTO      

HSM  
[80] 

Ontologies AUTO  

Co-occurrence 

patterns, 

Statistics 

   

CtxMatch/ 

CtxMatch2 
[7] 

Classification, 

OWL 
USER  

String-

based, 

Language-
based, 

WordNet 

  

Based on 

description 
logics  

 

CBW 
[37] 

OWL AUTO 
String-
based  

Coincidence-
based weighting 

   

GeRoMeSuite 

[55] 

SQL DDL, 

XML, OWL 

AUTO,  

SEMI 

String-

based  

Similarity 

flooding, 
Children 

  
Merging, 

Composing 

AOAS 
[93] 

OWL AUTO 

String-

based, 
Language-

based 

Compatible is-a, 
part-of paths 

 
Rule-based 
inference 

 

ILIADS 

[87] 
OWL 

AUTO, 

INSTANCES 

String-
based, 

Language-
based, 

WordNet 

Matching 

neighbors, 
Clustering 

 
Rule-based 

inference 
Ontology merging 

Scarlet 

[74] 
OWL AUTO 

String-

based  
  

Ad hoc 
rule-based 

inference 

 

BeMatch 

[10] 

BPEL, 

WCSL 

AUTO, 

SEMI 

String-
based, 

Language-

based, 

WordNet 

Graph 

isomorphism 
  

Service 

transformation 

PORSCHE 
[75] 

XSD AUTO 

String-
based, 

Language-

based, 
Thesaurus  

Clustering, 

Tree mining 

 

  Mediation schema 

Match-Planner 

[24] 
XML 

AUTO, 

 

Second 

String, 
Language-

based, 
WordNet 

    

Falcon-AO 

[40] 

RDF,  

OWL 

AUTO, 

INSTANCES 

String-

based, 
WordNet 

Structural affinity    

SMB 

[61] 

Web form, 

XML schema, 

OWL 

AUTO      

FSM 

[45] 

Relational 

schema 

AUTO, 

INSTANCES 

String-

based 
    

Anchor-Flood 

[39] 

RDFS,  

OWL 
AUTO 

String-

based, 

Language-
based, 

WordNet 

Internal, external 

similarities, 

Iterative anchor-
based similarity 

propagation 

   

[88] OWL  
AUTO,  
SEMI 

String-
based  

Variations of 
similarity flooding 

   

AgreementMaker 

[11] 

XML, RDFS, 

OWL, N3 

AUTO,  

SEMI 

String-

based, 
Language-

based, 
WordNet 

Descendant, 

sibling similarities 
   

HAMSTER 

[66] 
XML 

AUTO,  

SEMI, 

INSTANCES 

String-

based, 
Language-

based, 

Naive 
Bayes,, 

Click logs 

Structure 

comparison 
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Smart Matcher 

[90] 
UML 

AUTO, 

USER , 
INSTANCES 

COMA++, 

FOAM 

Structure 

comparison  

Instances-

based  
 

Instance 

transformation 

GEM/Optima/ 

Optima+ 

[23][86][87] 

RDF, OWL, 
N3 

AUTO, 
INSTANCES 

String-based, 

Language-based, 

WordNet 

Expectation-

Maximization, 
Matching of 

neighbors  

 

 
 

 

 
 

 

YAM/YAM++ 

[25] 

XML, 

OWL 

AUTO, 

SEMI 
WordNet 

Structure 

profiles, 

Similarity 
flooding 

 

 

 
 

 
 

 

GOALS 

[59] 
OWL AUTO      

ContentMap 
[47] 

OWL 
AUTO,  
SEMI 

    
Integrated 
ontology 

SeqDisc 

[2] 
WSDL AUTO 

String-based, 

Language-based 

Leafs, Children, 

Ancestor 
comparison 

   

OMviaUO 

[62] 

RDFS,  

OWL 
AUTO 

String-based, 

Language-based 
 Taxonomic  

Rule-based 

inference 
 

BLOOMS/ 

BLOOMS+ 

[43] 

RDFS,  
OWL 

AUTO 
Language-based, 
API alignment  

Taxonomic 
structure 

 
Rule-based 
inference 

 

Homolonto 

[71] 
OBO 

AUTO,  

SEMI 
Language-based, 

Children 

similarity 
  

Homologous 

groups 

DSSim 

[65] 

OWL, 

SKOS 
AUTO 

String-based, 
Language-based, 

WordNet 

 
Instances-

based 
 

Question 

answering 

TaxoMap 

[38] 
OWL 

AUTO,  

SEMI 

String-based, 

Language-based 

Structure 
comparison via 

is-a hierarchies 

   

VSBM&GBM 
[44] 

Ontologies 
AUTO, 

INSTANCES  
Statistics, 

SVM 
Correlations in 
graph 

   

CSR 
[82] 

OWL 
AUTO, 

INSTANCES 
String-based 

Feature-based 

similarity, 
Machine 

learning 

   

Prior+ 
[60] 

OWL 
AUTO, 

INSTANCES 
String-based, 

Language-based 

Feature-based 
similarity, 

Neural network 

   

MoTo 

[28] 
OWL 

AUTO, 

INSTANCES 

Naive Bayes, 
k-Nearest 

neighbor 

Structural 

validation: 

Taxonomy, 
Other relations 

  Neural network 

CODI 

[67] 
OWL 

AUTO, 

INSTANCES 
SimMetrics 

Structure 

comparison 
 

Markov net 

inference 
 

CIDER 

[36] 
OWL AUTO 

String-based, 

Language-based 
    

MapPSO 

[6] 
OWL AUTO 

String-based, 
Language-based, 

WordNet 

Population-
based 

optimization 

   

ProbaMap 

[84] 
Taxonomy 

AUTO, 

INSTANCES, 

Statistics, Naive 
Bayes, 

C4.5, SVM 

    

LogMap 

[48] 
OWL 

AUTO,  

SEMI 

String-based, 
Language-based, 

WordNet 

Structure 

comparison 
 

Propositional 
Horn 

satisfiability 

 

AMC 

[72] 

Relational 
schema, 

XML,  

OWL 

AUTO,  

SEMI, 
INSTANCES 

     

iMatch 

[1] 
OWL 

AUTO,  

SEMI 
String-based      

PARIS 
[81] 

RDFS 
AUTO, 

INSTANCES 
String-based 

Probabilistic 
estimates via 

iterative fixed 
point 

computation 

   

AMS 

[73] 

Relational 
schema, 

XML,  

OWL 

AUTO,  

SEMI, 
INSTANCES 
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LogMap2 

[49] 
OWL 

AUTO,  

SEMI 

String-based, 

Language-based, 
WordNet 

Structure 

comparison 
 

Propositional 

Horn 
satisfiability  

 

XMapSiG/ 

XMapGen  
[14] 

Ontology  SEMI 
WordNet, 

String-based 

Based on 
information 

about the 

presence of the 
properties and 

their cardinality 
constraints  

   

XMAP ++ 
[15] 

Ontology 
OWL-DL 

SEMI 

WordNet, 

String-based, 
Aggregated 

similarities  

Based on 

information 

about the 

presence of the 

properties and 
their cardinality 

constraints  

Based on 

linguistic 

measures 

 

RNA is used to 

calculate the 
best match 

between pairs 

of entities, to 
maximize the 

discovery of 

many similar 

couples and 

reduce the 
number of those 

who are 
dissimilar. The 

final alignment 

is obtained after 
filtering based 

on a threshold 

RiMOM-IM 

[77] 
Ontologies SEMI 

Tokens-based 
 (TF/IDF), 

Aggregated 
similarities  

 

Instances-
based, 

cosines 
traditional 

similarity, 

maxpooling+ 
similarity  

  

MaasMatch 

[32] 
Ontologies AUTO  Language-based  

Based on 

linguistic 
measures 

  

InsMT 
[56] 

 

Ontologies 
AUTO,  

SEMI 

String-based 

(levenshtein, Jaro,  

SLIM-Winkler), 

Aggregated 
similarities 

 
Instances-

based 
  

InsMTL 

[57] 
Ontologies 

AUTO,  

SEMI 

String-based 

(levenshtein 

distance, Jaro,  
SLIM-Winkler) , 

Aggregated 
similarities, 

WordNet 

 

Instances-

based, 
Based on 

linguistic 
measures 

 
The system 

applies a local 

filter 

AOT  

[56] 
Ontologies 

AUTO,  

SEMI 

String-based 
(distance of 

levenshtein, Jaro,  

SLIM-Winkler, 

Jaro-Winkler, 

Smith-Waterman 
and Needleman-  

Wunsch), 

Aggregated 
similarities 

   

The system 

applies a local 

filter, 

The system 

applies a 
second filter to 

identify global 

alignment 

 InstML 

[57] 
Ontologies 

AUTO,  

SEMI 

String-based 

(distance of 
levenshtein, Jaro,  

SLIM-Winkler, 

Jaro-Winkler, 
Smith-Waterman 

and Needleman-  
Wunsch), 

Aggregated 

similarities, 
WordNet 

 
Based on 
linguistic 

measures 
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IV.  STATISTICS 

The approaches we have previously cited, their main 

difference reside in the strategy used to discover the 

similarity between two entities. In most cases, are used 

terminological and/or structural and/or extensional 

similarity measures. Semantic measures are operated in 

some approaches, for example, CtxMatch, S-Match and 

LogMap. 

A combination strategy allows to find the final 

similarity. This, generally, represents an equivalence or 

subsumption relationship between two entities from two 

different ontologies. The use of multiple similarity 

measures gives often better results. On the other side, 

these tools do not always specify which matchers were 

used or how the similarities were aggregated. Moreover, 

it should be noted that frameworks are more suitable for 

reuse as well as the combination of existing similarity 

measures according to preset criteria. 

These systems also differ in functioning and interaction 

offered to their users.  

The intervention of a domain expert in the ontology 

alignment process is often necessary to avoid 

inconsistencies. By more interactive tools, such as 

PROMPT or FOAM, suggesting alignment results to the 

user often gives better results. On the other side, they do 

not allow reusing the alignment results to deduce other 

correspondence relations. 

Fig.1. shows that researches in the ontology alignment 

field started with the nineties. From 2000 to 2009, the 

number of works in this domain is becoming increasingly 

important with the appearance of the Semantic Web 

notion. This number reaches its maximum in 2010. 

Researches continue to this day.  

From Fig. 2, it is clear that the terminological method 

intervenes in a large number of approaches. The 

structural method also marks its importance among other 

techniques. This can be explained by the fact that the 

methods based on terms or structure are often 

manageable and easy to be implemented. Unlike semantic 

methods which require the availability of semantic 

sources, difficult to be constructed. They also require 

complex reasoning engines to infer semantic relations. 

 

 

Fig.1. Evolution of the number of works in the ontology alignment field. 

 

Fig.2. Rate of using alignment techniques (terminological, structural, 

extensional and semantic) 

 

V.  CONCLUSION AND PERSPECTIVES 

The Alignment Process Consists In Producing A Set 

Of Mappings (Correspondences) Between Entities. 

However, The Automatic Generation Of 

Correspondences Between Two Ontologies Is Extremely 

Difficult, Due To The Differences (Conceptual, Habits, 

Etc.) Between Different Communities Concerned By 

These Ontologies. Furthermore, The Alignment Issue Is 

Particularly Acute When The Number And Volume Of 

Data Schemas Are Important. Indeed, In The Real 

Applications, Where Ontologies Are Voluminous And 

Complex, Requirements Of Execution Time And 

Memory Space Are Two Significant Factors That 

Directly Influence The Performance Of An Alignment 

Algorithm. 

The Purpose Of This Paper Is To Identify And Cite 

Works In The Ontology Alignment Field. This Can Clear 

The Way For Researchers In This Domain. They Can 

Choose The Appropriate Approach To Their Problem. 

They Can Also See The Shortcomings And Correct Them, 

Or Propose New Alignment Approaches. As For Us, We 

Expect To Offer A Maintenance Approach Of Existing 

Alignments. This Problem Can Be Caused By The 

Development And Evolution Of Ontologies Making Parts 

Of An Existing Alignment. 
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