Work place: Department of ECE, Lakireddy Bali Reddy College of Engineering, Mylavaram, India
E-mail: 2k6ravi@gmail.com
Website:
Research Interests: Speech Synthesis, Speech Recognition
Biography
Ravi Kumar Kandagatla was born in Markapur, India in 1988. He received the Bachelor of Technology degree from Jawaharlal Nehru Technological University, Kakinada in 2009 and received Master of Technology in Digital Electronics and Communication Systems from Jawaharlal Nehru Technological University, Kakinada in 2011. He is Currently working as a Research Scholar at JNTUK, Kakinada and also working as Assistant professor in Lakireddy Balireddy College of Engineering, Mylavaram, India. He has 7 years of teaching experience. He has 4 International publications. His interest area of research is speech processing .
By Ravi Kumar Kandagatla P.V. Subbaiah
DOI: https://doi.org/10.5815/ijigsp.2019.07.02, Pub. Date: 8 Jul. 2019
Super-Gaussian Based Bayesian Estimators plays significant role in noise reduction. However, the traditional Bayesian Estimators process only DFT spectral amplitude of noisy speech and the phase is left unprocessed. While deriving Bayesian estimators, consideration of phase information provides improved results. The main objective of this paper is twofold. Firstly, the Super-Gaussian based Complex speech coefficients given Uncertain Phase (CUP) based Bayesian estimators are compared under different noise conditions like White noise, Babble noise, Pink noise, Modulated Pink noise, Factory noise, Car noise, Street noise, F16 noise and M109 noise. Secondly, a novel speech enhancement method is proposed by combining CUP estimators with different NMF approaches and online bases updation. The statistical estimators show less effective results under completely non-stationary assumptions. Non-negative Matrix Factorization (NMF) based algorithms show better performance for non stationary noises. The drawback of NMF is, it requires training and/or requires clean speech and noise signals. This drawback can be overcome by taking the advantages of both statistical approaches and NMF approaches. Such approaches like Posteriori Regularized NMF (PR-NMF), Weibull Rayleigh NMF (WR-NMF), Nakagami Rayleigh (NR-NMF), CUP estimator with Gamma and Generalized Gamma distributions + NMF + Online bases Update (CUP-GG + NMF + OU) and CUP-GG + WR-NMF / NR-NMF + OU are considered for comparison. The objective of this paper is to analyze the performance of speech enhancement methods using Bayesian estimators, NMF approaches, Combination of statistical and NMF approaches. The objective performance measures Perceptual Evaluation of Speech Quality (PESQ), Short-Time Objective Intelligibility (STOI), Signal to Noise Ratio (SNR), Signal to Distortion Ratio (SDR), Segmental SNR (Seg SNR) are considered for comparison.
[...] Read more.Subscribe to receive issue release notifications and newsletters from MECS Press journals