Bala Dhandayuthapani V.

Work place: Department of Information Technology, University of Technology and Applied Sciences - Shinas, Oman



Research Interests:


Dr. Bala Dhandayuthapani V. received his Ph.D. in Information Technology and Computer Science (interdisciplinary) from Manonmaniam Sundaranar University, India. He has more than 20 years of experience as a faculty member, including in India, Ethiopia, and Oman. He is presently working as an IT faculty member at the University of Technology and Applied Sciences, Shinas, North Al Batinah, Sultanate of Oman. He received his M.Tech. in Information Technology from Allahabad Agricultural Institute of Deemed University, his M.S. in Information Technology, and his B.Sc. in Computer Science from Bharathidasan University. He published more than 30 peer-reviewed technical research papers in various international journals (20 articles) and conference proceedings (11 articles). He also authored a textbook entitled "An Introduction to Parallel and Distributed Computing through Java". He has given several invited technical talks and has been involved in many academic activities.

Author Articles
Python Data Analysis and Visualization in Java GUI Applications Through TCP Socket Programming

By Bala Dhandayuthapani V.

DOI:, Pub. Date: 8 Jun. 2024

Python is popular in artificial intelligence (AI) and machine learning (ML) due to its versatility, adaptability, rich libraries, and active community. The existing Python interoperability in Java was investigated using socket programming on a non-graphical user interface (GUI). Python's data analysis library modules such as numpy, pandas, and scipy, together with visualization library modules such as Matplotlib and Seaborn, and Scikit-learn for machine-learning, aim to integrate into Java graphical user interface (GUI) applications such as Java applets, Java Swing, and Java FX. The substantial method used in the integration process is TCP socket programming, which makes instruction and data transfers to provide interoperability between Python and Java GUIs. This empirical research integrates Python data analysis and visualization graphs into Java applications and does not require any additional libraries or third-party libraries. The experimentation confirmed the advantages and challenges of this integration with a concrete solution. The intended audience for this research extends to software developers, data analysts, and scientists, recognizing Python's broad applicability to artificial intelligence (AI) and machine learning (ML). The integration of data analysis and visualization and machine-learning functionalities within the Java GUI. It emphasizes the self-sufficiency of the integration process and suggests future research directions, including comparative analysis with Java's native capabilities, interactive data visualization using libraries like Altair, Bokeh, Plotly, and Pygal, performance and security considerations, and no-code and low-code implementations.

[...] Read more.
Implementation of Python Interoperability in Java through TCP Socket Communication

By Bala Dhandayuthapani V.

DOI:, Pub. Date: 8 Aug. 2023

Programming language interoperability is highly desirable for a variety of reasons, such as the fact that if a programmer implements specific functionality that has previously been implemented in another language, the software component can simply be reused. Because they are particularly well-suited and efficient at implementing features, certain languages regularly arise to handle issue areas. There are numerous third-party programs available for a variety of languages. When programmers have experience with and preferences for several programming languages, collaboration on complex projects is easier. A range of techniques and methods have been used to handle various cross-language communication challenges. The importance of interoperability and cross-language communication between Java and Python via socket programming is examined in this research article through an empirical model of different execution environment paradigms that can help guide the development of improved approaches for integrating Python libraries with Java without the need for extra libraries or third-party libraries. The interoperability strategy benefits from the quality and availability of Python libraries in Java by cutting down on development time, maintenance needs, general usability, upkeep, and system integration without incurring additional costs. It is versatile to use this interoperability strategy since identical scripts are run in Java client contexts in the same way that they were used in Python. There are different Python modules used in the research article to exemplify and evaluate the expressions, built-in functions, strings, collections, data exploration, statistical data analysis using NumPy, SciPy, and Pandas, and Scikit-Learn for machine learning with linear regression.

[...] Read more.
Other Articles