International Journal of Wireless and Microwave Technologies (IJWMT)

ISSN: 2076-1449 (Print)

ISSN: 2076-9539 (Online)

DOI: https://doi.org/10.5815/ijwmt

Website: https://www.mecs-press.org/ijwmt

Published By: MECS Press

Frequency: 6 issues per year

Number(s) Available: 73

(IJWMT) in Google Scholar Citations / h5-index

IJWMT is committed to bridge the theory and practice of wireless and microwave technologies. From innovative ideas to specific algorithms and full system implementations, IJWMT publishes original, peer-reviewed, and high quality articles in the areas of wireless and microwave technologies. IJWMT is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of wireless and microwave technology applications.

 

IJWMT has been abstracted or indexed by several world class databases: Google Scholar, Microsoft Academic Search, Baidu Wenku, Open Access Articles, CNKI, GetInfo, WorldCat, OneSearch, ZB MED, CrossRef, JournalTOCs, etc..

Latest Issue
Most Viewed
Most Downloaded

IJWMT Vol. 14, No. 1, Feb. 2024

REGULAR PAPERS

Analysis of the Vulnerability of the Network by Using the ML Technique

By Masood Ahmad Mohd Nadeem Raees Ahmad Khan

DOI: https://doi.org/10.5815/ijwmt.2024.01.01, Pub. Date: 8 Feb. 2024

The increasing use of healthcare devices and their communication networks has raised concerns about the security of patient information and the potential for cyber-attacks. In this study, we propose a machine learning approach for classifying security vulnerabilities in healthcare device communication networks by using the Machine Learing (ML) Technique. We collected a dataset of healthcare device vulnerabilities and used feature selection and engineering techniques to extract the most relevant features for the classification task. We trained several machine learning algorithms, Snort algorithm, and support vector machines (SVM) and evaluated their performance using various evaluation metrics. The results showed that the SVM and Snort algorithms had an accuracy of 94%, a precision of 95%, a recall of 93%, and an F1-score of 94%. Our approach can help identify and prioritize security vulnerabilities in healthcare device communication networks, which can lead to better security practices and patient safety.

[...] Read more.
An Analytical Study of Cloud Security Enhancements

By Imran Khan Tanya Garg

DOI: https://doi.org/10.5815/ijwmt.2024.01.02, Pub. Date: 8 Feb. 2024

Enhancements and extensions in pervasive computing have enabled penetration of cloud computing enabled services into almost all walks of human life. The expansion of computational capabilities into everyday objects and processes optimizes end users requirement to directly interact with computing systems. However, the amalgamation of technologies like Cloud Computing, Internet of Things (IoT), Deep Learning etc are further giving way to creation of smart ecosystem for smart human living. This transformation in the whole pattern of living as well as working in enterprises is generating high expectations as well as performance load on existing cloud implementation as well as cloud services. In this complete scenario, there are simultaneous efforts on optimizing as well as securing cloud services as well as the data available on the cloud.
This manuscript is an attempt at introducing how cloud computing has become pivotal in the current enterprise setting due to its pay-as -you -use character. However, the allurement of using services without having to procure and retain involved hardware and software also has certain risks involved. The main risk involved in choosing cloud is compromising security concerns. Many potential customers avoid migrating towards cloud due to security concerns. Security concerns for the cloud implementations in the recent times have grown exponentially for all the varied stakeholders involved. The aim of this manuscript is to analyze the current security challenges in the existing cloud implementations. We provide a detailed analysis of existing cloud security taxonomies enabling the reader to make an informed decision on what combination of services and technologies could be used or hired to secure their data available on the cloud.

[...] Read more.
A Novel Approach by Integrating Dynamic Network Selection and Security Measures to improve Seamless Connectivity in Ubiquitous Networks

By Prasanna Kumar G. Shankaraiah N. Rajashekar M B Sudeep J Shruthi B S Darshini Y Manasa K B

DOI: https://doi.org/10.5815/ijwmt.2024.01.03, Pub. Date: 8 Feb. 2024

Researchers have developed an innovative approach to ensure seamless connectivity in ubiquitous networks with limited or irregular network coverage. The proposed method leverages advanced network technologies and protocols to seamlessly establish and maintain network connections across various environments. It integrates multiple wireless communication technologies and dynamic network selection algorithms, overcoming issues like poor reliability, limited scalability, and security problems. Compared to existing solutions, the method exhibits improved connection handover efficiency, network throughput, and end-to-end delay. Considering user mobility, network availability, and quality of service needs, it makes informed decisions about the most suitable network connections. The proposed method is expected to significantly impact the development of future ubiquitous networking solutions.

[...] Read more.
Enhancing Cybersecurity through Bayesian Node Profiling and Attack Classification

By Priyanka Desai

DOI: https://doi.org/10.5815/ijwmt.2024.01.04, Pub. Date: 8 Feb. 2024

Due to the epidemic, the majority of users and businesses turned to the internet, necessitating the necessity to preserve the populace and safeguard their data. However, after being attacked, the expense of data protection runs into the millions of dollars. The phrase "Protection is better than cure" is true. The paper deals with profiling the node for safeguarding against the cyberattack. There is a lot of research on network nodes. Here, we address the requirement to profile the node before utilizing machine learning to separate the data. In order to scan the nodes for risks and save the nature of threat as a database, node profiling is being investigated. The data is then classified using a machine learning algorithm utilizing the database. This research focuses on the application of machine learning methods, specifically Gaussian Naive Bayes and Decision Trees, for the segmentation of cyberattacks in streaming data. Given the continuous nature of cyberattack data, Gaussian Naive Bayes is introduced as a suitable approach. The research methodology involves the development and comparison of these methods in classifying detected attacks. The Bayesian method is employed to classify detected attacks, emphasizing the use of Gaussian Naive Bayes due to its adaptability to streaming data. Decision Trees are also discussed and used for comparison in the results section. The research explores the theoretical foundations of these methods and their practical implementation in the context of cyberattack classification. After classification, the paper delves into the crucial task of identifying intrusions in the streaming data. The effectiveness of intrusion detection is highlighted, emphasizing the importance of minimizing false negatives and false positives in a real-world cybersecurity setting. The implementation and results section presents empirical findings based on the application of Gaussian Naive Bayes and Decision Trees to a dataset. Precision, recall, and accuracy metrics are used to evaluate the performance of these methods. The research concludes by discussing the implications of the findings and suggests that Gaussian Naive Bayes is a suitable choice for streaming data due to its adaptability and efficiency. It also emphasizes the need for continuous monitoring and detection of cyberattacks to enhance overall cybersecurity. The paper provides insights into the practical applicability of these methods and suggests future work in the field of intrusion detection.

[...] Read more.
Programming SDNs: A Compass for SDN Programmer

By Suhail Ahmad Ajaz Hussain Mir

DOI: https://doi.org/10.5815/ijwmt.2024.01.05, Pub. Date: 8 Feb. 2024

The modern communication networks have evolved from simple-static systems to highly flexible and adaptive systems facilitating dynamic programmability and reconfiguration. This network evolution has influenced the lowest level of packet processing in data plane to highest level of network control and management functions. It has also influenced the overall network design and architecture which is clearly evident from the emergence of SDN and NFV. With the wide-spread acceptance of SDN, a novel networking paradigm, the network programmability has re-appeared as a top research area in networking and numerous programming languages have been proposed. In this paper, we present a systematic review of various state-of-the-art SDN programming languages used to program different network planes. We follow a top-down approach, starting with the high-level or top-tier programming languages followed by the data plane or bottom-tier programming languages. We have provided an in-depth analysis of various top-tier and bottom-tier programming languages and compared them in terms of most prominent features and supported abstractions. In addition to it, we have elaborated various programming models used in different bottom-tier programming languages which provide necessary abstractions for mapping diverse functionalities of data plane algorithms splendidly onto the specialized hardware like ASICs. Lastly, we have highlighted the research challenges in SDN programming languages like cross platform programming, necessary language libraries, support for network verification, NFV, stateful and inline packet processing, which need to be incorporated into existing programming languages to support diverse functions required in next generation networks.

[...] Read more.
Quantum Computers’ threat on Current Cryptographic Measures and Possible Solutions

By Tohfa Niraula Aditi Pokharel Ashmita Phuyal Pratistha Palikhel Manish Pokharel

DOI: https://doi.org/10.5815/ijwmt.2022.05.02, Pub. Date: 8 Oct. 2022

Cryptography is a requirement for confidentiality and authentic communication, and it is an indispensable technology used to protect data security. Quantum computing is a hypothetical model, still in tentative analysis but is rapidly gaining traction among scientific communities. Quantum computers have the potential to become a pre-eminent threat to all secure communication because their performance exceeds that of conventional computers. Consequently, quantum computers are capable of iterating through a large number of keys to search for secret keys or quickly calculate cryptographic keys, thereby endangering cloud security measures. This paper’s main target is to summarize the vulnerability of current cryptographic measures in front of a quantum computer. The paper also aims to cover the fundamental concept of potential quantum-resilient cryptographic techniques and explain how they can be a solution to complete secure key distribution in a post-quantum future.

[...] Read more.
Smart Locker: IOT based Intelligent Locker with Password Protection and Face Detection Approach

By Niaz Mostakim Ratna R Sarkar Md. Anowar Hossain

DOI: https://doi.org/10.5815/ijwmt.2019.03.01, Pub. Date: 8 May 2019

In today’s world, security becomes a very important issue. We are always concerned about the security of our valuables. In this paper, we propose an IOT based intelligent smart locker with OTP and face detection approach, which provides security, authenticity and user-friendly mechanism. This smart locker will be organized at banks, offices, homes and other places to ensure security. In order to use this locker firstly the user have to login. User has to send an unlock request code (OTP) and after getting a feedback Email with OTP, he/she will be able to unlock the locker to access his/her valuables. We also introduce face detection approach to our proposed smart locker to ensure security and authenticity.

[...] Read more.
Adversarial Machine Learning Attacks and Defenses in Network Intrusion Detection Systems

By Amir F. Mukeri Dwarkoba P. Gaikwad

DOI: https://doi.org/10.5815/ijwmt.2022.01.02, Pub. Date: 8 Feb. 2022

Machine learning is now being used for applications ranging from healthcare to network security. However, machine learning models can be easily fooled into making mistakes using adversarial machine learning attacks. In this article, we focus on the evasion attacks against Network Intrusion Detection System (NIDS) and specifically on designing novel adversarial attacks and defenses using adversarial training. We propose white box attacks against intrusion detection systems. Under these attacks, the detection accuracy of model suffered significantly. Also, we propose a defense mechanism against adversarial attacks using adversarial sample augmented training. The biggest advantage of proposed defense is that it doesn’t require any modification to deep neural network architecture or any additional hyperparameter tuning. The gain in accuracy using very small adversarial samples for training deep neural network was however found to be significant.

[...] Read more.
Design of Dual Band Microstrip Patch Antenna for 5G Communication Operating at 28 GHz and 46 GHz

By Anurag Nayak Shreya Dutta Sudip Mandal

DOI: https://doi.org/10.5815/ijwmt.2023.02.05, Pub. Date: 8 Apr. 2023

The design of suitable compact antenna for 5G applications with superior return loss and bandwidth is still a fascinating task to the researchers. In this paper, the authors have designed a dual band microstrip patch antenna for 5G communications at 28 GHz and 46 GHz using CST studio. Rectangular patch antenna with double slots is considered to serve the purpose. The performance of the proposed patch antenna is very satisfactory in terms of return loss, VSWR, bandwidth and directivity. The values of S11 are well below -39dB and values of VSWR are very close to 1 for both resonance frequencies. The bandwidths for both cases are greater than 1.8 GHz which is an essential characteristic of 5G patch antennas for high speed connectivity and efficiency. Directivities are above 6 dB which are very suitable for the present problem. The simulation results are also compared with existing dual band 5G patch antennas and it has been observed that proposed antenna has outperformed the existing patch antennas that worked in 28GHz and 46GHz frequency range. The main advantage of this patch antenna is that it’s simple structure and good return loss, bandwidth and gain.

[...] Read more.
Methodologies, Requirements and Challenges of Cybersecurity Frameworks: A Review

By Alaa Dhahi Khaleefah Haider M. Al-Mashhadi

DOI: https://doi.org/10.5815/ijwmt.2023.01.01, Pub. Date: 8 Feb. 2023

As a result of the emergence of new business paradigms and the development of the digital economy, the interaction between operations, services, things, and software through numerous fields and communities may now be processed through value chains networks. Despite the integration of all data networks, computing models, and distributed software that offers a broader cloud computing, the security solution is have a serious important impact and missing or weak, and more work is needed to strengthen security requirements such as mutual entity trustworthiness, Access controls and identity management, as well as data protection, are all aspects of detecting and preventing attacks or threats. Various international organizations, academic universities and institutions, and organizations have been working diligently to establish cybersecurity frameworks (CSF) in order to combat cybersecurity threats by (CSFs). This paper describes CSFs from the perspectives of standard organizations such as ISO CSF and NIST CSF, as well as several proposed frameworks from researchers, and discusses briefly their characteristics and features. The common ideas described in this study could be helpful for creating a CSF model in general.

[...] Read more.
SDN Interfaces: Protocols, Taxonomy and Challenges

By Suhail Ahmad Ajaz Hussain Mir

DOI: https://doi.org/10.5815/ijwmt.2022.02.02, Pub. Date: 8 Apr. 2022

The ever-increasing demands of Internet services like video on demand, big data applications, IoE and multi-tenant data centers have compelled the network industry to change its conventional non-evolving network architecture. Software Defined Network (SDN) has emerged as a promising network architecture which provides necessary abstractions and novel APIs to facilitate network innovations and simplifies network resource management by breaking the conventional network into multiple planes. All these SDN planes interact through open interfaces or APIs which are commonly categorized into southbound, northbound and west/eastbound interfaces. In this manuscript, we have identified and emphasized various communication protocols used at south and northbound interfaces. We have provided a taxonomy of south and northbound communication protocols based on their dependence, capabilities and properties. The pros and cons associated with each communication mechanism are highlighted and the numerous research challenges and open issues involved at these two interfaces are elucidated. In addition to it, we have proposed the necessary abstractions and extensions required in communication protocols at these two interfaces to simplify real-time monitoring and virtualization in next generation networks.

[...] Read more.
Investigating Coupling Interactions in Split-Ring Resonator Dimers

By Akaa Agbaeze Eteng Ngozi Peggy Udeze

DOI: https://doi.org/10.5815/ijwmt.2023.02.01, Pub. Date: 8 Apr. 2023

Topological wireless power transfer (TWPT) arrays provide directional power transfer, which are robust to external disturbances. Often realized as a chains of dimers, the ability to adjust the coupling between constituent resonator elements is an important means of establishing necessary conditions for power transfer. This paper explores the coupling interactions that are possible within dimers consisting of paired split-ring resonators (SRRs) in close proximity. Transfer efficiencies and through impedances are computationally studied for various rotational orientations of edge-and broadside-coupled SRRs. The obtained results reveal that relative rotational orientation can be employed as a sensitive design parameter to provide a variety of high- and low-coupling options within and between SRR dimers, with different power transfer efficiency implications.

[...] Read more.
Performance Evaluation of Slotted Star-Shaped Dual-band Patch Antenna for Satellite Communication and 5G Services

By Md. Najmul Hossain Al Amin Islam Jungpil Shin Md. Abdur Rahim Md. Humaun Kabir

DOI: https://doi.org/10.5815/ijwmt.2023.03.05, Pub. Date: 8 Jun. 2023

The advancement of wireless communication technology is growing very fast. For next-generation communication systems (like 5G mobile services), wider bandwidth, high gain, and small-size antennas are very much needed. Moreover, it is expected that the next-generation mobile system will also support satellite technology. Therefore, this paper proposes a slotted star-shaped dual-band patch antenna that can be used for the integrated services of satellite communication and 5G mobile services whose overall dimension is 15×14×1.6 mm3. The proposed antenna operates from 18.764 GHz to 19.775 GHz for K-band satellite communication and 27.122 GHz to 29.283 GHz for 5G (mmWave) mobile services. The resonance frequencies of the proposed antenna are 19.28 GHz and 28.07 GHz having bandwidths of 1.011 GHz and 2.161 GHz, respectively. Moreover, the proposed dual-band patch antenna has a maximum radiation efficiency of 76.178% and a maximum gain of 7.596 dB.

[...] Read more.
Analysis, Design and Realization of Negative Impedance Converter Circuit with Current Feedback Operational Amplifier

By Sami Durukan Asim Egemen Yilmaz Mahmut Keser

DOI: https://doi.org/10.5815/ijwmt.2022.02.01, Pub. Date: 8 Apr. 2022

Negative impedance converter (NIC) circuits are very interesting and beneficial building blocks with the capability of generating negative resistance, capacitance and/or inductance elements which do not exist as a singular electrical component in practice. They are commonly used for the impedance matching and parasitic element cancellation in electrically small antennas and amplifier circuits. In this study, a special kind of NIC circuit in HF band up to 30 MHz is analysed, designed and physically realised with a current feedback (CFB) operational amplifier (OPAMP) which is the core active element of the NIC circuit. The non-inverting terminal of CFB OPAMP is used for RF input signal with the elimination of DC offset voltage in the proposed NIC circuit. The negative impedance conversion capability of the circuit is theoretically proved and simulated first. This capability of CFB OPAMP to generate negative impedance is very important in high-frequency applications as they have low distortion and faster switching than that of voltage feedback (VFB) OPAMP. For the physical realizations, printed circuit board (PCB) is designed and manufactured on FR-4 dielectric material. Measurement results obtained from the realized circuit with resistive (100Ω) and capacitive (10pF) loads to be converted negatively showed that the negative impedance conversion performance of the circuit is very close to its theoretical behaviour in the lower HF frequencies generally in 3- 20 MHz band.

[...] Read more.
A Systematic Review of Privacy Preservation Models in Wireless Networks

By Namrata J. Patel Ashish Jadhav

DOI: https://doi.org/10.5815/ijwmt.2023.02.02, Pub. Date: 8 Apr. 2023

Privacy preservation in wireless networks is a multidomain task, including encryption, hashing, secure routing, obfuscation, and third-party data sharing. To design a privacy preservation model for wireless networks, it is recommended that data privacy, location privacy, temporal privacy, node privacy, and route privacy be incorporated. However, incorporating these models into any wireless network is computationally complex. Moreover, it affects the quality of services (QoS) parameters like end-to-end delay, throughput, energy consumption, and packet delivery ratio. Therefore, network designers are expected to use the most optimum privacy models that should minimally affect these QoS metrics. To do this, designers opt for standard privacy models for securing wireless networks without considering their interconnectivity and interface-ability constraints. Due to this, network security increases, but overall, network QoS is reduced. To reduce the probability of such scenarios, this text analyses and reviews various state-of-the-art models for incorporating privacy preservation in wireless networks without compromising their QoS performance. These models are compared on privacy strength, end-to-end delay, energy consumption, and network throughput. The comparison will assist network designers and researchers to select the best models for their given deployments, thereby assisting in privacy improvement while maintaining high QoS performance.Moreover, this text also recommends various methods to work together to improve their performance. This text also recommends various proven machine learning architectures that can be contemplated & explored by networks to enhance their privacy performance. The paper intends to provide a brief survey of different types of Privacy models and their comparison, which can benefit the readers in choosing a privacy model for their use.

[...] Read more.
Quantum Computers’ threat on Current Cryptographic Measures and Possible Solutions

By Tohfa Niraula Aditi Pokharel Ashmita Phuyal Pratistha Palikhel Manish Pokharel

DOI: https://doi.org/10.5815/ijwmt.2022.05.02, Pub. Date: 8 Oct. 2022

Cryptography is a requirement for confidentiality and authentic communication, and it is an indispensable technology used to protect data security. Quantum computing is a hypothetical model, still in tentative analysis but is rapidly gaining traction among scientific communities. Quantum computers have the potential to become a pre-eminent threat to all secure communication because their performance exceeds that of conventional computers. Consequently, quantum computers are capable of iterating through a large number of keys to search for secret keys or quickly calculate cryptographic keys, thereby endangering cloud security measures. This paper’s main target is to summarize the vulnerability of current cryptographic measures in front of a quantum computer. The paper also aims to cover the fundamental concept of potential quantum-resilient cryptographic techniques and explain how they can be a solution to complete secure key distribution in a post-quantum future.

[...] Read more.
Design of Dual Band Microstrip Patch Antenna for 5G Communication Operating at 28 GHz and 46 GHz

By Anurag Nayak Shreya Dutta Sudip Mandal

DOI: https://doi.org/10.5815/ijwmt.2023.02.05, Pub. Date: 8 Apr. 2023

The design of suitable compact antenna for 5G applications with superior return loss and bandwidth is still a fascinating task to the researchers. In this paper, the authors have designed a dual band microstrip patch antenna for 5G communications at 28 GHz and 46 GHz using CST studio. Rectangular patch antenna with double slots is considered to serve the purpose. The performance of the proposed patch antenna is very satisfactory in terms of return loss, VSWR, bandwidth and directivity. The values of S11 are well below -39dB and values of VSWR are very close to 1 for both resonance frequencies. The bandwidths for both cases are greater than 1.8 GHz which is an essential characteristic of 5G patch antennas for high speed connectivity and efficiency. Directivities are above 6 dB which are very suitable for the present problem. The simulation results are also compared with existing dual band 5G patch antennas and it has been observed that proposed antenna has outperformed the existing patch antennas that worked in 28GHz and 46GHz frequency range. The main advantage of this patch antenna is that it’s simple structure and good return loss, bandwidth and gain.

[...] Read more.
Methodologies, Requirements and Challenges of Cybersecurity Frameworks: A Review

By Alaa Dhahi Khaleefah Haider M. Al-Mashhadi

DOI: https://doi.org/10.5815/ijwmt.2023.01.01, Pub. Date: 8 Feb. 2023

As a result of the emergence of new business paradigms and the development of the digital economy, the interaction between operations, services, things, and software through numerous fields and communities may now be processed through value chains networks. Despite the integration of all data networks, computing models, and distributed software that offers a broader cloud computing, the security solution is have a serious important impact and missing or weak, and more work is needed to strengthen security requirements such as mutual entity trustworthiness, Access controls and identity management, as well as data protection, are all aspects of detecting and preventing attacks or threats. Various international organizations, academic universities and institutions, and organizations have been working diligently to establish cybersecurity frameworks (CSF) in order to combat cybersecurity threats by (CSFs). This paper describes CSFs from the perspectives of standard organizations such as ISO CSF and NIST CSF, as well as several proposed frameworks from researchers, and discusses briefly their characteristics and features. The common ideas described in this study could be helpful for creating a CSF model in general.

[...] Read more.
Privacy Enhancing for Fog Computing based - IoT

By Samaa Y. Tarabay Ibrahim Yasser Ahmed S. Samrah Abeer T. Khalil

DOI: https://doi.org/10.5815/ijwmt.2023.03.01, Pub. Date: 8 Jun. 2023

With the massive inflation of newly developed technologies, recourse to data has become a necessity in light of the current inflation and excessive need dominating the world and developed societies. According to the control of millions of smart devices and sensors connected to an interconnected and controlled automated system within installed scales due to the services provided by IOT devices through the created fog layer that connects the cloud centers and those devices, in addition, very large amounts of that data including public and private are passed through the connection of Internet of Things devices to each other. Smart and advanced networks as one of the fog computing applications play a prominent and accurate role in the infrastructure for reliable and sound data transmission. Accordingly, the process of data aggregation is an important and common matter in the world of fog-enhancing Internet of Things, so preserving the privacy of that data is a matter of concern, and based on this principle, we propose in this paper a model for data aggregation that maintains privacy using a foggy computing environment called PPFDA (privacy preserving based- fog computing data aggregation). We use in our scheme DF homomorphic cryptosystem as it consider one of the aggregation models that ensures the privacy purpose. The theoretical results and analyzes show that our design is ensuring the privacy of data during collection using an algorithm of DF. The results confirm that the proposed scheme achieves security and privacy purposes in modern network systems for the Internet of things based in fog computing. In addition, it contributes significantly to the efficient performance of storage operations.

[...] Read more.
Design of Microstrip Patch Antenna Array

By Mohd Asaduddin Shaik Seif Shah Mohd Asim Siddiqui

DOI: https://doi.org/10.5815/ijwmt.2023.03.04, Pub. Date: 8 Jun. 2023

Throughout the years there has been a crisis for low gain and efficiency in Microstrip patch antennas. Therefore, the microstrip patch antenna was designed for better gain, directivity and efficiency using array configuration of microstrip patch antenna with low dielectric constant at 10.3GHZ resonant frequency. The proposed design is of a triangular shaped patch array and a substrate RT duroid-5880 of dielectric constant 2.2. The results after simulation shows a good return loss, bandwidth around 950Mhz-1Ghz, directivity of 11.4db in a particular direction, gain of 11.4 dB with 99% radiation effect. The design proposed is helpful for applications like military defence and communication purposes.

[...] Read more.
Performance Analysis of IoT Cloud-based Platforms using Quality of Service Metrics

By Supreme Ayewoh Okoh Elizabeth N. Onwuka Suleiman Zubairu Bala Alhaji Salihu Peter Y. Dibal

DOI: https://doi.org/10.5815/ijwmt.2023.01.05, Pub. Date: 8 Feb. 2023

There are several IoT platforms providing a variety of services for different applications. Finding the optimal fit between application and platform is challenging since it is hard to evaluate the effects of minor platform changes. Several websites offer reviews based on user ratings to guide potential users in their selection. Unfortunately, review data are subjective and sometimes conflicting – indicating that they are not objective enough for a fair judgment. Scientific papers are known to be the reliable sources of authentic information based on evidence-based research. However, literature revealed that though a lot of work has been done on theoretical comparative analysis of IoT platforms based on their features, functions, architectures, security, communication protocols, analytics, scalability, etc., empirical studies based on measurable metrics such as response time, throughput, and technical efficiency, that objectively characterize user experience seem to be lacking. In an attempt to fill this gap, this study used web analytic tools to gather data on the performance of some selected IoT cloud platforms. Descriptive and inferential statistical models were used to analyze the gathered data to provide a technical ground for the performance evaluation of the selected IoT platforms. Results showed that the platforms performed differently in the key performance metrics (KPM) used. No platform emerged best in all the KPMs. Users' choice will therefore be based on metrics that are most relevant to their applications. It is believed that this work will provide companies and other users with quantitative evidence to corroborate social media data and thereby give a better insight into the performance of IoT platforms. It will also help vendors to improve on their quality of service (QoS).

[...] Read more.
A Systematic Review of Privacy Preservation Models in Wireless Networks

By Namrata J. Patel Ashish Jadhav

DOI: https://doi.org/10.5815/ijwmt.2023.02.02, Pub. Date: 8 Apr. 2023

Privacy preservation in wireless networks is a multidomain task, including encryption, hashing, secure routing, obfuscation, and third-party data sharing. To design a privacy preservation model for wireless networks, it is recommended that data privacy, location privacy, temporal privacy, node privacy, and route privacy be incorporated. However, incorporating these models into any wireless network is computationally complex. Moreover, it affects the quality of services (QoS) parameters like end-to-end delay, throughput, energy consumption, and packet delivery ratio. Therefore, network designers are expected to use the most optimum privacy models that should minimally affect these QoS metrics. To do this, designers opt for standard privacy models for securing wireless networks without considering their interconnectivity and interface-ability constraints. Due to this, network security increases, but overall, network QoS is reduced. To reduce the probability of such scenarios, this text analyses and reviews various state-of-the-art models for incorporating privacy preservation in wireless networks without compromising their QoS performance. These models are compared on privacy strength, end-to-end delay, energy consumption, and network throughput. The comparison will assist network designers and researchers to select the best models for their given deployments, thereby assisting in privacy improvement while maintaining high QoS performance.Moreover, this text also recommends various methods to work together to improve their performance. This text also recommends various proven machine learning architectures that can be contemplated & explored by networks to enhance their privacy performance. The paper intends to provide a brief survey of different types of Privacy models and their comparison, which can benefit the readers in choosing a privacy model for their use.

[...] Read more.
Design and Analysis of an Elliptical Edge with Pentagon Slot Patch Antenna for 5G Applications

By Pendli Pradeep K. Jaya Sankar P. Chandra Sekhar

DOI: https://doi.org/10.5815/ijwmt.2022.05.04, Pub. Date: 8 Oct. 2022

This paper presents a design of modified rectangular patch antenna with a pentagon slot and elliptical-shaped strip at the edge of the antenna for Sub-6G band 5G wireless applications. The proposed antenna excited using a 50-ohm coaxial cable transmission line. The overall dimensions of the substrate are 49.72 x 43.02 x 1.7 mm3 used on a Rogers RTDuroid 5880(TM) with relative permittivity of ∈r=2.2. The proposed antenna is simulated using Ansys HFSS Software at a resonant frequency of 3.2 GHz. The experimental and simulated results are matched well. The measured return loss value of the antenna is -20 dB at 3.2 GHz frequency, which can cover an impedance bandwidth of 150MHz. The proposed antenna provides a stable radiation pattern, radiation efficiency is 96%, and peak gain is 4.6 dBi. This antenna finds applications for WiMAX wireless broadband communication, radar, and commercial Wireless LAN in S-band.

[...] Read more.
Performance Analysis of HWMP Protocol in Wireless Mesh Network

By Jyoti Mishra Awadhesh Kumar Akash Raghuvanshi

DOI: https://doi.org/10.5815/ijwmt.2023.02.04, Pub. Date: 8 Apr. 2023

Wireless Mesh Networks (WMNs) play a vital role in next-generation wireless networking, with applications ranging from last-mile wireless internet, transportation systems enterprise, enterprise networks, home networking, and wireless community networks are all examples of wireless community networks.Individual vendors created several proprietary mesh systems, but IEEE organized the IEEE 802.11s task force to design a meshed networking exposition to assure interoperability.In this paper, we evaluate the Quality of service parameters such as throughput, delay, PDR and jitter of mesh protocol.We simulated the HWMP protocol's performance,the present work is an attempt to address the problem related to wireless mesh networks by minimizing the delay and maximizing the throughput of the network.

[...] Read more.
Full-Wave Numerical Analysis of Dual-Band E-Patch Antenna and Reactive Loading Technique to Ascertain the Impedance Driving Point Function

By Fubara Edmund Alfred-Abam Pam Paul Gyang Fiyinfoluwa P. Olubodun

DOI: https://doi.org/10.5815/ijwmt.2023.03.03, Pub. Date: 8 Jun. 2023

This paper encompasses the numerical analysis involved with the Electromagnetic (EM) full-wave simulation tool Advanced Design System (ADS) which uses the Method of Moment (MOM) and Finite Element Method (FEM). MOM is utilized to solve Maxwell’s equations which are transformed into integral equations before discretization and boundary conditions are applied while FEM computes the electrical behavior of the high frequency EM wave distribution, and then analyze the antenna parameters. The main objective is to investigate the effect of reactive loading on the microstrip patch surface which is used to control the behavior of the impedance bandwidth and obtain dual-band frequency operation. The study further examines how the perturbed patch antenna design targets the operating frequencies of 2.4 GHz and 5.8 GHz for possible range and speed. The proposed method provides insight into the analysis of the mathematical model employed in attaining the Driving Point Impedance Function (DPF) of the E-patch microstrip patch antenna. This approach was done to quantify the reduction in reflections for improved Radio Frequency (RF) network output.

[...] Read more.